Applied Physics A

, 124:351 | Cite as

Energetic ion-induced modification of embedded Au nanoparticles size: a three-dimensional kinetic lattice Monte Carlo study

Article
  • 31 Downloads

Abstract

Nanometer-sized noble metallic particles embedded in dielectric matrices are of wide interest. To exploit their plasmonic properties, efforts have been made to vary their size and shape by various methods during or after fabrication. Energetic ion irradiation has been found to be very useful in this objective. In the present work, we have studied the effect of inter-particle separation using atomistic simulations to gain a better understanding of the pathway in the modification of size of nanoparticles which are smaller than the ion track size in the matrix. It is found that the size of nanoparticles can be varied depending on the initial inter-particle separation and the temperature in the spike generated by the passed energetic ion. The results agree with the model proposed by our group, based on inter-particle separation, to explain experimental results on the swift heavy ion-induced modification of the size of embedded nanoparticles.

Notes

Acknowledgements

The authors would like to Dr. K.-H. Heinig for introducing SAK to 3D kinetic lattice Monte Carlo techniques and Dr. M. Toulemonde (CIMAP, France) for providing the thermal spike code.

References

  1. 1.
    J. Jana, M. Ganguly, T. Pal, RSC Adv. 6, 86174 (2016)CrossRefGoogle Scholar
  2. 2.
    M.A. Garcia, J. Phys. D Appl. Phys. 44, 283001 (2011)CrossRefGoogle Scholar
  3. 3.
    G. Xu, M. Tazawa, P. Jin, S. Nakao, Appl. Phys. A 80, 1535 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    K. Chan, B.T. Goh, S.A. Rahman, M.R. Muhamad, C.F. Dee, Z. Aspanut, Vacuum 86, 1367 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    D. Kabiraj, S.R. Abhilash, L. Vanmarcke, N. Cinausero, J.C. Pivin, D.K. Avasthi, Nucl. Instrum. Method Phys. Res. Sect. B Beam Interact. Mater. Atoms 244, 100 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    G. Rizza, E.A. Dawi, A.M. Vredenberg, I. Monnet, Appl. Phys. Lett. 95, 043105 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    M.C. Ridgway et al., Phys. Rev. Lett. 106, 095505 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    E.A. Dawi, G. Rizza, M.P. Mink, A.M. Vredenberg, F.H.P.M. Habraken, J. Appl. Phys. 105, 074305 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    P.-E. Coulon et al., Sci. Rep. 6, 21116 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    D.K. Avasthi, Y.K. Mishra, F. Singh, J.P. Stoquert, Nucl. Instrum. Method Phys. Res. Sect. B Beam Interact. Mater. Atoms 268, 3027 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Yang, C. Zhang, Y. Song, J. Gou, L. Zhang, Y. Meng, H. Zhang, Y. Ma, Nucl. Instrum. Methods Phys. Res. Sect. B 308, 24 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    F.P. Luce, E. Oliviero, G.d..M. Azevedo, D.L. Baptista, F.C. Zawislak, P.F.P. Fichtner, J. Appl. Phys. 119, 035901 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    E.A. Dawi, A.M. Vredenberg, G. Rizza, M. Toulemonde, Nanotechnology 22, 215607 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    R. Giulian, P. Kluth, L.L. Araujo, D.J. Sprouster, A.P. Byrne, D.J. Cookson, M.C. Ridgway, Phys. Rev. B 78, 125413 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    I.B. Radović, M. Buljan, M. Karlušić, M. Jerčinović, G. Dražič, S. Bernstorff, R. Boettger, New J. Phys. 18, 093032 (2016)CrossRefGoogle Scholar
  16. 16.
    C.H. Kerboua, J.M. Lamarre, M. Chicoine, L. Martinu, S. Roorda, Thin Solid Films 527, 186 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    Y.K. Mishra, D. Kabiraj, D.K. Avasthi, J.C. Pivin, Radiat. Eff. Defects Solids 162, 207 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Y.K. Mishra, D.K. Avasthi, P.K. Kulriya, F. Singh, D. Kabiraj, A. Tripathi, J.C. Pivin, I.S. Bayer, A. Biswas, Appl. Phys. Lett. 90, 073110 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    S.A. Khan, K.H. Heinig, D.K. Avasthi, J. Appl. Phys. 109, 094312 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M. Toulemonde, J. Costantini, C. Dufour, A. Meftah, E. Paumier, F. Studer, Nucl. Instrum. Methods Phys. Res. Sect. B 116, 37 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    M. Toulemonde, W.J. Weber, G. Li, V. Shutthanandan, P. Kluth, T. Yang, Y. Wang, Y. Zhang, Phys. Rev. B 83, 054106 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    T.H.Y. Vu, Y. Ramjauny, G. Rizza, M. Hayoun, J. Appl. Phys. 119, 034302 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, T. Komatsubara, Phys. Rev. B 78, 054102 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    S. Srivastava, D. Avasthi, W. Assmann, Z. Wang, H. Kucal, E. Jacquet, H. Carstanjen, M. Toulemonde, Phys. Rev. B 71, 193405 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    M. Strobel, K.H. Heinig, W. Moller, A. Meldrum, D.S. Zhou, C.W. White, R.A. Zuhr, Nucl. Instrum. Method Phys. Res. Sect. B Beam Interact. Mater. Atoms 147, 343 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    P. Novikov, K.H. Heinig, A. Larsen, A. Dvurechenskii, Nucl. Instrum. Method Phys. Res. Sect. B Beam Interact. Mater. Atoms 191, 462 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    E.M. Bringa, R.E. Johnson, M. Jakas, Phys. Rev. B 60, 15107 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    M. Strobel, K.H. Heinig, W. Moller, Phys. Rev. B 64, 245422 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    F. Ruffino, A. Canino, M.G. Grimaldi, F. Giannazzo, C. Bongiorno, F. Roccaforte, V. Raineri, J. Appl. Phys. 101, 064306 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    S.A. Khan, S.K. Srivastava, D.K. Avasthi, J. Phys. D Appl. Phys. 45, 375304 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    H. Amekura, K. Kono, N. Okubo, N. Ishikawa, Phys. Status Solidi (B) 252, 165 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson, J. Am. Chem. Soc. 132, 16 (2010)CrossRefGoogle Scholar
  33. 33.
    M. Sugiyama, S. Inasawa, S. Koda, T. Hirose, T. Yonekawa, T. Omatsu, A. Takami, Appl. Phys. Lett. 79, 1528 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    Y.H. Kim, C.W. Kim, H.G. Cha, D.K. Lee, B.K. Jo, G.W. Ahn, E.S. Hong, J.C. Kim, Y.S. Kang, J. Phys. Chem. C 113, 5105 (2009)CrossRefGoogle Scholar
  35. 35.
    R. Zanella, C. Louis, Catal. Today 107–108, 768 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Inter-University Accelerator CentreAruna Asaf Ali MargNew DelhiIndia
  2. 2.Amity Institute of NanotechnologyAmity UniversityNoidaIndia
  3. 3.NUSNNI-NanocoreNational University of SingaporeSingaporeSingapore

Personalised recommendations