Applied Physics A

, 124:361 | Cite as

Analyzing the effect of geometric parameters of double split ring resonator on the effective permeability and designing a cloak of invisibility in microwave regime

Article
  • 17 Downloads

Abstract

A metamaterial unit cell based on double split ring resonator has been designed. The SRRs consist of a pair of concentric square copper rings. The metamaterial unit cell designed in millimeter scales. Effect of some geometric parameters of the split ring resonator such as the size of the gap, the width of the split ring resonator copper wires, the length of the inner ring and the length of the outer ring on the magnetic permeability has been investigated. The magnetic resonance frequency, the magnetic plasma frequency, the resonance bandwidth and the effective magnetic permeability at 9.5 GHz related to each metamaterial unit cell with specified geometric parameters has been calculated. Using these metamaterial unit cells, an invisible cloak operating in microwave regime is designed. The situation of the gaps in the double split ring resonator with two and four gaps is also changed and the effective permeability for each of them is obtained.

References

  1. 1.
    R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77–79 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, Contemp. Phys. 45, 191–202 (2006).  https://doi.org/10.1080/00107510410001667434 ADSCrossRefGoogle Scholar
  3. 3.
    V.G. Veselago, Soviet. Phys. Uspekhi. 10, 509–514 (1968)ADSCrossRefGoogle Scholar
  4. 4.
    J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773–4776 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, J. Phys. Condens. Matter. 10, 4785–4809 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE. Trans. Microwave. Theory. Technol. 47, 2075–2084 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    D.R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933–2936 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations. (Wiley-IEEE Press, Piscataway, 2006), pp. 3–30, 37, 143–150, 215–234, 240–256. https://www.wiley.com/en-ir/Metamaterials:+Physics+and+Engineering+Explorations+-p-9780471761020 CrossRefGoogle Scholar
  9. 9.
    K.B. Alici, E. Ozbay, Phys. Status Solidi. B 244, 1192–1196 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977–980 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications. (Springer, New York, 2010)CrossRefGoogle Scholar
  12. 12.
    P.G. Balmaz, O.J.F. Martin, J. Appl. Phys. 92, 2929–2936 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M.R. Forouzeshfard, M.H. Farzad, Plasmonics 10, 1345–1357 (2015)CrossRefGoogle Scholar
  14. 14.
    M.R. Forouzeshfard, M.H. Farzad, Plasmonics 10, 125–130 (2015)CrossRefGoogle Scholar
  15. 15.
    R. Marques, F. Mesa, J. Martel, F. Medina, IEEE. Trans. Antennas Propag. 51(10), 2572–2581 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    R. Marques, F. Medina, R. Rafii-El-Idrissi, Phys. Rev. B Condens. Matter., 65, 144441(1)–144441(6) (2002)ADSGoogle Scholar
  17. 17.
    J.D. Baena, R. Marques, F. Medina, J. Martel, Phys. Rev. B, 69, 014402(1)–(5) (2004)ADSCrossRefGoogle Scholar
  18. 18.
    J.D. Baena, J. Bonache, F. Martın, R.M. Sillero, F. Falcone, T. Lopetgi, M.A.G. Laso, J. Garcıa, I. Gil, M.F. Portillo, M. Sorolla, IEEE Trans. Microwave Theory Technol. 53(4), 1451–1461 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    E. Ekmekci, G. Turhan-Sayan, Prog. Electromag. Res. B 12, 35–62 (2009)CrossRefGoogle Scholar
  20. 20.
    F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K.B. Alici, E. Ozbay, IEEE Trans. Microwave Theory Technol. 55(12), 2865–2873 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    X. Chen, T.M. Grzegorczyk, B.I. Wu, J. Pacheco, J.A. Kong, Phys. Rev. E 70(016608), 1–7 (2004)Google Scholar
  22. 22.
    Enkrich Magnetic Metamaterials for Photonics, Dissertation, University of Karlsruhe Germany, 2006Google Scholar
  23. 23.
    S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, C.M. Soukoulis, Science 306, 1351–1353 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceVali-e-Asr UniversityRafsanjanIran

Personalised recommendations