Zn-modified TiO2 thin films deposited by combining plasmas produced by laser ablation and magnetron sputtering
- 28 Downloads
Abstract
TiO2 thin films with different Zn contents were successfully deposited by combining plasmas produced by laser ablation and magnetron sputtering in a hybrid configuration. The titania films were produced by ablating a TiO2 target keeping the ablation conditions constant for all the samples. Incorporation of different amounts of zinc into the titania was achieved by a magnetron sputtering plasma produced using argon to sputter a Zn target. The effect of the amount of Zn incorporated in the TiO2 on the chemical composition, crystalline structure, optical properties, thickness and photocatalytic response was studied. The compositional results show that the Zn content varied from 3.6 to 17.4 at.%. The structural characterization reveals the formation of the rutile phase of TiO2 which changes to Zn titanates such as ZnTi3O8 and ZnTiO3 as the zinc content is increased. UV–Vis measurements show a blue shift in the optical band gap as a function of the increasing Zn content. An improvement in the photocatalytic response of films containing Zn was observed in the degradation of a malachite green dye solution.
Notes
Acknowledgements
This research project was partially supported by the CONACYT project CB-240998 and the ININ project CB-602.
References
- 1.R. Shama Rehman, A.M. Ullah, N.D. Butt, Gohar, J. Hazard. Mater. 170, 560 (2009)CrossRefGoogle Scholar
- 2.Y. Wang, P.-H. Yuan, C.-M. Fan, Y. Wang, G.-Y. Ding, Y.-F. Wang, Ceram. Int. 38, 4173 (2012)CrossRefGoogle Scholar
- 3.D.B. Chrisey, G.K. Hubler, Pulsed laser deposition of thin films. (Wiley, New York, 1994)Google Scholar
- 4.P.J. Kelly, R.D. Arnell, Vacuum 56, 159 (2000)ADSCrossRefGoogle Scholar
- 5.A.A. Voevodin, M.A. Capano, A.J. Safriet, M.S. Donley, J.S. Zabinski, Appl. Phys. Lett. 69, 188 (1996)ADSCrossRefGoogle Scholar
- 6.A.A. Voevodin, J.P. O’Neill, S.V. Prasad, J.S. Zabinski, J. Vac. Sci. Technol. A 17, 986 (1999)ADSCrossRefGoogle Scholar
- 7.J.L. Endrino, J.J. Nainaparampil, J.E. Krzanowski, Surf. Coat. Technol. 157, 95 (2002)CrossRefGoogle Scholar
- 8.J.G. Jones, A.A. Voevodin, Surf. Coat. Technol. 184, 1 (2004)CrossRefGoogle Scholar
- 9.M. Jelinek, L. Bacakova, J. Remsa, T. Kocourek, P. Pisarik, M. Vandrovcova, E. Filova, S. Kubinova, J. Mater. Sci. Chem. Eng. 4, 98 (2016)Google Scholar
- 10.S. Yoshiaki, H. Kawasaki, J. Namba, K. Iwatsuji, K. Doi, K. Wada, Surf. Coat. Technol. 174–175, 1293 (2003)Google Scholar
- 11.M. Jelinek, T. Kocourek, J. Kadlec, V. Vorlıcek, M. Cernansky, V. Studnika, A. Santoni, P. Bohac, F. Uherek, Thin Solid Films 506–507, 101 (2006)CrossRefGoogle Scholar
- 12.D. Benetti, R. Nouar, R. Nechache, H. Pepin, A. Sarkissian, F. Rosei, J.M. Mac Leod, Sci. Rep. 7, 2503 (2017)ADSCrossRefGoogle Scholar
- 13.J.H. Scofield, J. Electron Spectrosc. Relat. Phenom. 8, 129 (1976)CrossRefGoogle Scholar
- 14.N. Ikeo, Y. Iijima, N. Niimura, M. Shigematsu, T. Tazawa, S. Matsumoto, K. Kojima, Y. Nagasawa, Handbook of X-ray photoelectron spectroscopy. JEOL: Tokyo, (1991)Google Scholar
- 15.J. Abad, C. Gonzalez, P.L. de Andres, E. Roman, Phys. Rev. B 82, 165420 (2010)ADSCrossRefGoogle Scholar
- 16.Y. Yu, A.J. Wang, A.W. Li, A.W. Zhengb, Y. Cao, Cryst. Eng. Comm. 17, 5074 (2015)CrossRefGoogle Scholar
- 17.A.R. Phani, M. Passacantando, S. Santucci, J. Phys. Chem. Solids 68, 317 (2007)ADSCrossRefGoogle Scholar
- 18.E. Haro-Poniatowski, R. Rodríguez Talavera, M. de la Cruz Heredia, O. Cano-Corona, R. Arroyo-Murillo, J. Mater. Res. 9, 2102 (1994)ADSCrossRefGoogle Scholar
- 19.L. Budigi, M.R. Nasina, K. Shaik, S. Amaravadi, J. Chem. Sci. 127, 509 (2015)CrossRefGoogle Scholar
- 20.J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. 15, 627 (1966)ADSCrossRefGoogle Scholar
- 21.L.G.J. De Haart, G. Blasse, J. Solid State Chem. 61, 135 (1986)ADSCrossRefGoogle Scholar
- 22.I. Fernandez, A. Cremades, J. Piqueras, Semicond. Sci. Technol. 20, 239 (2005)ADSCrossRefGoogle Scholar