Applied Physics A

, 124:362 | Cite as

Nanofibrous polystyrene membranes prepared through solution blow spinning with an airbrush and the facile application in oil recovery

  • Xiaohui Zhang
  • Ju Lv
  • Xueqiong Yin
  • Zhiming Li
  • Qiang Lin
  • Li Zhu
Article
  • 21 Downloads

Abstract

Polystyrene (PS) dissolved in dichloromethane was spun to prepare the nanofibrous polystyrene membranes (NPS) through solution blow spinning with a commercialized airbrush. The influences of spinning conditions on the membrane morphology, density, and porosity were investigated. Through varying the PS concentration (8%, 9%, 10%), gas pressure (0.1, 0.2, 0.3 MPa), and acceptance distance (10, 12, 15, 18 cm), NPS with diameters of 200–1400 nm were prepared. The membranes had high porosity of 83.9%, and super-hydrophobic and super-oleophilic surface. The oil absorbency to motor oil, peanut oil, diesel oil, and heavy oil was 29.35, 27.27, 21.81, and 22.80 g/g, respectively, while that of the commercialized nonwoven polypropylene was 9.34, 9.17, 7.09, and 7.79 g/g, respectively. NPS could separate oil from water surface in several seconds. It was easy to prepare the membrane in situ on the surface of an oil/water mixture and remove the oil while peeling off the membrane, indicating NPS is potential as oil recovery material in large-area oil pollution environment.

Notes

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (Nos. 21466011, 21264007).

References

  1. 1.
    Y. Yang, Y. Deng, Z. Tong, C. Wang, J. Mater. Chem. 2, 9994–9999 (2014)CrossRefGoogle Scholar
  2. 2.
    Q.L. Ma, H.F. Cheng, A.G. Fane, R. Wang, H. Zhang, Small 12, 2186–2202 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Mukherjee, A.M. Kansara, D. Saha, R. Gonnade, D. Mullangi, B. Manna, A.V. Desai, S.H. Thorat, P.S. Singh, A. Mukherjee, S.K. Ghosh, Chem. Eur. J. .22, 10937–10943 (2016)CrossRefGoogle Scholar
  4. 4.
    C. Lin, C.L. Huang, C.C. Shern, Resour. Conserv. Recy. 52, 1162–1166 (2008)CrossRefGoogle Scholar
  5. 5.
    H. Yoon, S.H. Na, J.Y. Choi, S.J.S. Latthe, M.T. Swihart, S.S. Al-Deyab, S.S. Yoon, Langmuir 30, 11761–11769 (2014)CrossRefGoogle Scholar
  6. 6.
    H. Maimaiti, K. Arken, M. Wumaier, Mater. Res. Innov. 19, 434–439 (2015)CrossRefGoogle Scholar
  7. 7.
    X. Zheng, Z. Guo, D. Tian, X. Zhang, W. Li, ACS Appl. Mater. Interfaces 7, 4336–4343 (2015)CrossRefGoogle Scholar
  8. 8.
    L. Peng, C.J. Liu, B.J. Liu, S.L. Chu, G.H. Luan, Y.Q. Pei, Chem. Indu. Eng. Pro. 33, 405–411 (2014)Google Scholar
  9. 9.
    M. Khosravi, S. Azizian, ACS. Appl. Mater. Interfaces 7, 25326–25333 (2015)CrossRefGoogle Scholar
  10. 10.
    G.Z. Yin, D.L. Zhao, L.W. Zhang, Y. Ren, S. Ji, H.F. Tang, Z. Zhou, Q.F. Li, Chem. Eng. J. 302, 1–11 (2016)CrossRefGoogle Scholar
  11. 11.
    Z. J.Feng, Nguyen,, M.D. Fan, Hai, Chem. Eng. J. 270, 168–175 (2015)CrossRefGoogle Scholar
  12. 12.
    J.E. Oliveira, E.A. Moraes, J.M. Marconcini, L.H.C. Mattoso, G.M. Glenn, S. Medeiros, J. Appl. Poly. Sci. 129, 3672–3681 (2013)CrossRefGoogle Scholar
  13. 13.
    J.Y. Tong, L. Xu, H. Wang, X.P. Zhuang, F. Zhang, RSC. Adv. 5, 83232–83238 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Benavides, S.C. Jana, D.H. Reneker, Macromolecules 46, 6081–6090 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    E. E.Stojanovska, E.S. Canbay, M.D. Pampal, O. Calisir, Y. Agma, Polat, RSC Adv. 16, 87 (2016)Google Scholar
  16. 16.
    E.S. Medeiros, G. M.Glenn, A.P. Klamczynski, W.J. .Orts, L.H. CMattoso, J. Appl. Polym. Sci. 113, 2322–2330 (2009)CrossRefGoogle Scholar
  17. 17.
    D.D. D. S.Parize, J.E. D.Oliveira, M.M. .Foschini, J.M. .Marconcini, L.H.C. Mattoso, J. Appl. Polym. Sci. 133, 43379 (2016)Google Scholar
  18. 18.
    L. Zhang, P. Kopperstad, M. West, N. Hedin, F. Hao, J. Appl. Polym. Sci. 114, 3479–3486 (2009)CrossRefGoogle Scholar
  19. 19.
    X.P. Zhuang, X.C. Yang, L. Shi, B.W. Cheng, K.T. Guan, W.M. Kang, Carbohydr. Polym. 90, 982–987 (2012)CrossRefGoogle Scholar
  20. 20.
    D.D.S. Parize, M.M. Foschini, J.E.D. Oliveira, A.P. Klamczynski, G.M. Glenn, J.M. Marconcini, L.H.C. Mattoso, J. Mater. Sci. 51, 4627–4638 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    S.Z. Yu, H.Y. Tan, J. Wang, X. Liu, K. Zhou, ACS Appl. Mater. Interfaces 7, 6745–6753 (2015)CrossRefGoogle Scholar
  22. 22.
    N. Zhang, W. Jiang, T.H. Wang, J.J. Gu, S.T. Zhong, S. Zhou, T. Xie, J.J. Fu, Ind. Eng. Chem. Res. 54, 11033–11039 (2015)CrossRefGoogle Scholar
  23. 23.
    L.H. Yu, G. Z.Hao, J.J. Gu, S. Zhou, N. Zhang, W. Jiang, J. Magn. Magn. Mater. 394, 14–21 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    M.W. Lee, S.P. An, S.S. Latthe, C.M. Lee, S.K. Hong, S.S. Yoon, ACS Appl. Mater. Interfaces 5(1), 0597–10604 (2013)Google Scholar
  25. 25.
    H.M. Li, Q.G. Zhang, N.N. Guo, A.M. Zhu, Q.L. Liu, Chem. Eng. J. 264, 329–335 (2015)CrossRefGoogle Scholar
  26. 26.
    D.M. Chipara, J. Macossay, A.V.R. Ybarra, A.C. Chipara, T.M. Eubanks, Appl. Surf. Sci. 275, 23–27 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    P. Henke, K. Lang, P. Kubát, J. Sýkora, M. Šlouf, ACS Appl. Mater. Interfaces 5, 3776–3783 (2013)CrossRefGoogle Scholar
  28. 28.
    Y. Polat, E.S. Pampal, E. Stojanovska, R. Simsek, A. Hassanin, A. Kilic, J. Appl. Poly. Sci. 9, 133–139 (2016)Google Scholar
  29. 29.
    S. Sinha-Ray, A.L. Yarin, B. Pourdeyhimi, Polymer 56, 452–463 (2015)CrossRefGoogle Scholar
  30. 30.
    M.H. Tai, P. Gao, B.Y. Tan, D.D. Sun, J.O. Leckie, ACS Appl. Mater. Interfaces 6, 9393–9401 (2014)CrossRefGoogle Scholar
  31. 31.
    R. Du, Q.H. Zhao, P. Li, H.Y. Ren, X. Gao, J. Zhang, ACS Appl. Mater. Interfaces 8, 1025–1032 (2016)CrossRefGoogle Scholar
  32. 32.
    A.M. Behrens, B.J. Casey, M.J. Sikorski, K.L. Wu, W. Tutak, A.D. Sandler, P. Kofinas, ACS Macro. Lett. 3, 249–254 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaohui Zhang
    • 1
  • Ju Lv
    • 1
  • Xueqiong Yin
    • 1
    • 3
  • Zhiming Li
    • 1
  • Qiang Lin
    • 2
  • Li Zhu
    • 1
  1. 1.Hainan Provincial Fine Chemical Engineering Research CenterHainan UniversityHaikouPeople’s Republic of China
  2. 2.Key Laboratory of Tropical Medicinal Plant Chemistry Ministry of EducationHainan Normal UniversityHaikouPeople’s Republic of China
  3. 3.School of Materials and Chemical EngineeringHainan UniversityHaikouPeople’s Republic of China

Personalised recommendations