Advertisement

Applied Physics A

, 124:356 | Cite as

The effect of deposition time on the structural, morphological and luminescence properties of Y2O2S:Eu3+ thin films prepared by pulsed laser deposition

  • P. C. Korir
  • F. B. Dejene
Article
  • 122 Downloads

Abstract

Y2O2S:Eu3+ thin films were deposited on Si (100) substrate using pulsed laser deposition technique (PLD) under 20 mTorr oxygen pressure. The effects of deposition time on the structural and photoluminescence properties were studied. X-ray diffraction analysis shows the formation of cubic and hexagonal crystal structures depending on the growth duration. Thin films deposited for 15, 30, 45 and 60 min have cubic phase with impurities of Y2O3, while that grown for 90 min is hexagonal phase. The crystallite size for the cubic phase was observed to increase from 58.4 to 79.2 nm with increase in deposition time. Scanning electron micrographs show the surface morphology comprising spherical particles distributed randomly over the surface with film prepared for longer duration having much larger grain size. Energy-dispersive X-ray spectrum confirms the presence of all the main elements of the Y2O2S:Eu3+ phosphor. Photoluminescence measurements showed blue emission of the films with the most intense peak observed at 452 nm, which is due to the Y2O2S host emission. The band gap values for the cubic phase calculated from absorbance spectra using the Tauc’s relation decreased from 4.35 to 4.18 eV with increase in deposition time attributed to change in crystallites size.

Notes

Acknowledgements

The authors would like to thank the University of the Free State and CSIR, South Africa, for providing us with the pulsed laser deposition system (PLD) for sample preparation. We are also thankful to African Laser Centre, South Africa, for financial support through the ALC scholarship. Special gratitude goes to Lucas Erasmus at the department of physics, university of the Free State, South Africa, for assisting with the sample preparation using the PLD technique.

References

  1. 1.
    R. Martínez-Martínez, S. Rivera, E. Yescas-Mendoza, E. Álvarez, C. Falcony, U. Caldiño, Opt. Mater. 33, 1320 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    M. Jiao, N. Guo, W. Lu, Y. Jia, W. Lv, Q. Zhao, B. Shao, H. You, Inorg. Chem. 52, 10340 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Kominami, T. Nakamura, Y. Nakanishi, Y. Hatanaka, Jpn. J. Appl. Phys. 129, 86 (1996)Google Scholar
  4. 4.
    H.S. Uh, S.J. Kwon, J.D. Lee, J. Vac. Sci. Technol. B 472, 15 (1997)Google Scholar
  5. 5.
    Y. Sohda, D.M. Tanenbaum, S.W. Tuner, H.G. Craighead, J. Vac. Sci. Technol. B 15, 343 (1997)CrossRefGoogle Scholar
  6. 6.
    C.C. Kang, R.S. Liu, J. Lumin. 122–123, 574–576 (2007)CrossRefGoogle Scholar
  7. 7.
    J.S. Base, K.S. Shim, S.B. Kim, J.H. Jeong, S.S. Yi, J.C. Park, J. Cryst. Growth 264, 290–296 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    K. Ohno, T. Abe, J. Electrochem. Soc. 141, 1252 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    J. Thirumalai, R. Chandramohan, S. Auluck, T. Mahalingam, S.R. Srikumar, J. Colloid Interface Sci. 336, 889–897 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    G. Chongfeng, L. Lin, C. Changhong, H. Dexiu, S. Qiang, Mater. Lett. 62, 600–602 (2008)CrossRefGoogle Scholar
  11. 11.
    E. Nakazawa, H. Yamamato, J. Lumin. 128, 494 (2008)CrossRefGoogle Scholar
  12. 12.
    H. Li, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, K. Jang, H.S. Lee, S.S. Yi, Inorg. Chem. 52, 11210 (2013)CrossRefGoogle Scholar
  13. 13.
    X.X. Luo, W.H. Cao, J. Alloy. Compd. 460, 529 (2008)CrossRefGoogle Scholar
  14. 14.
    A.M. Pires, O.A. Serra, M.R. Davolos, J. Alloy. Compd. 374, 181 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Mikami, A. Oshiyama, J. Lumin. 87–89, 1206 (2000)CrossRefGoogle Scholar
  16. 16.
    T. Peng, L. Huajun, H. Yang, J. Mater. Chem. Phys. 85, 68 (2004)CrossRefGoogle Scholar
  17. 17.
    D.K. Kim, W. Kang, J. Bull. Korean Chem. Soc. 25, 12 (2004)Google Scholar
  18. 18.
    J.Y. Choe, D. Ravichandran, S.M. Blomquist, D.C. Morton, K.W. Kirchner, M.H. Ervin, U. Lee, J. Appl. Phys. Lett. 78, 24 (2001)Google Scholar
  19. 19.
    S. Li, A. Rajeev Ahuja, J. Appl. Phys. 97, 1037111–1037116 (2005)Google Scholar
  20. 20.
    A.A. Kader, M.M. Elkholy, J. Mater. Sci. 27, 2887–2895 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    Y. Natsume, H. Sakata, Thin Solid Films. 372, 30–36 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    S.D. Han, K.C. Singh, T.Y. Cho, H.S. Lee, D. Jakhar, J.P. Hulme, C.H. Han, J.D. Kim, I.I.S. Chun, J. Gwak, J. Lumin. 128, 301 (2008)CrossRefGoogle Scholar
  23. 23.
    Y.L. Chang, H.I. Hsiang, M.T. Liang, J. Alloy. Compd. 461, 598 (2008)CrossRefGoogle Scholar
  24. 24.
    P.D. Sarkisov, N.V. Popovich, A.G. Zhelnin, Glass Ceram 60, 9 (2003)Google Scholar
  25. 25.
    X. Jin, M. Götz, S. Wille, Y.K. Mishra, R. Adelung, C. Zollfrank, Adv. Mater. 25, 1342 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Som, S.K. Sharma, J. Phys. D: Appl. Phys. 45, 415102 (2012)CrossRefGoogle Scholar
  27. 27.
    D.P. Norton, Mater. Sci. Eng. R 43, 139–247 (2004)CrossRefGoogle Scholar
  28. 28.
    A.M. Chinie, S. Georgescu, A. Mateescu, A. Stefan, Romanian J. Phys. 51, 827 (2006)Google Scholar
  29. 29.
    J. Hao, S.A. Studenikin, M. Cocivera, J. Lumin. 93, 313 (2001)CrossRefGoogle Scholar
  30. 30.
    Y.Q. Zhai, Z.H. Yao, S.W. Ding, M.D. Qiu, J. Zhai, Mater. Lett. 57, 2901 (2003)CrossRefGoogle Scholar
  31. 31.
    P. Dainius, J.G. Ludwig, J. Electroceramics. 14, 103–111 (2005)CrossRefGoogle Scholar
  32. 32.
    J.C. Lee, K.H. Kang, S.K. Kim, K.H. Yoon, I.J. Park, J. Song, Sol. Energ. Mater. Sol. Cell. 64, 185 (2000)CrossRefGoogle Scholar
  33. 33.
    Z. Zhang, C. Bao, S. Ma, L. Zhang, S. Hou, J. Australas. Ceram. Soc. 48, 214 (2012)Google Scholar
  34. 34.
    H. Shin-ichi, Y. Toshinobu, K. Ko-ichi, S. Wataru, K. Hirosada, J. Am. Ceramic Soc. 79, 3041–3044 (1996)CrossRefGoogle Scholar
  35. 35.
    G.R. Bai, H. Zhang, C.M. Foster, Thin Solid Films. 325, 115–122 (1998)ADSCrossRefGoogle Scholar
  36. 36.
    H.J. Ko, Y.F. Chen, Z. Zhu, T. Yao, I. Kobayashi, H. Uchiki, Appl. Phys. Lett. 76(26), 1905 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    F. Mitsugi, E. Hiraiwa, T. Ikegami, K. Ebihara, Surf. Coat. Technol. 169–170, 553 (2003)CrossRefGoogle Scholar
  38. 38.
    H.T. Mohammed, A.A. Kadhim, H.K. Eman, Adv. Mater. Phys. Chem. 6, 85–97 (2016)CrossRefGoogle Scholar
  39. 39.
    C.R. Vijay, G.A. Sharada, C.N. Gajanan, Mater. Sci. Appl. 1, 187–190 (2010)Google Scholar
  40. 40.
    S.S. Yi, J. Korean Phys. Soc. 45, 1625–1628 (2004)Google Scholar
  41. 41.
    J. Seon, B. Kyoo, S. Shim, B.K. Moon, S.B. Kim, J.H. Jeong, S.S. Yi, J.H. Kim, J. Korean Phys. Soc. 46, 1193 (2005)Google Scholar
  42. 42.
    A.G. Ali, B.F. Dejene, H.C. Swart, Appl. Phys. A 122(5), 534 (2016)ADSCrossRefGoogle Scholar
  43. 43.
    S.G. Cao, Y. Li, H.H. Wu, J. Wang, B. Huang, T.Y. Zhang, Nano Lett. 17(8), 5148–5155 (2017)ADSCrossRefGoogle Scholar
  44. 44.
    R.H. Hannink, P.M. Kelly, B.C. Muddle, J. Am. Ceram. Soc. 83(3), 461–487 (2000)CrossRefGoogle Scholar
  45. 45.
    B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)Google Scholar
  46. 46.
    A.J. Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, J. Alloys Compd. 509, 5349 (2011)CrossRefGoogle Scholar
  47. 47.
    S. Yi, J.S. Bae, B.C. Choi, K.S. Shim, H.K. Yang, B.K. Moon, J.H. Jeong, J.H. Kim, Opt. Mater. 28, 703 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    J. Dhanaraj, M. Geethalakshmi, R. Jagannathan, T.R.N. Kutty, Chem. Phys. Lett. 387(1), 23–28 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    M. Mikami, A. Oshiyama, Phys. Rev. B 60, 1707 (1999)ADSCrossRefGoogle Scholar
  50. 50.
    N.S. Das, P.K. Ghosh, M.K. Mitra, K.K. Chattopadhyay, Phys. E: Low-Dimens. Syst. Nanostruct. 42(8), 2097–2102 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    B.E. Sernelius, K.F. Berggren, Z.C. Jin, I. Hamberg, C.G. Granqvist, Phys. Rev. B. 37(17), 10244 (1988)ADSCrossRefGoogle Scholar
  52. 52.
    C. Mehta, A.M. Jasim, G.S.S. Saini, S.K. Tripathi, J. Opto Electron. Adv. Mater. 10, 2461–2465 (2008)Google Scholar
  53. 53.
    S.M. kumaran, R. Gopalakrishnan, J. Sol–Gel. Sci. Technol. 62(2), 193 (2012)CrossRefGoogle Scholar
  54. 54.
    S. Aksoy, Y. Cagalar, S. Ilican, M. Caglar, Opt. Applicata. XL 1, 7 (2010)Google Scholar
  55. 55.
    F.A. Selim, M.H. Weber, D. Solodovnikov, K.G. Lynn, Phys. Rev. Lett. 99(8), 085502 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    M. Thambidurai, N. Murugan, N. Muthukumarasamy, S. Agilan, S. Vasantha, R. Balasundaraprabhu, J. Mater. Sci. Technol. 26(3), 193 (2010)CrossRefGoogle Scholar
  57. 57.
    A. Nakkiran, J. Thirumalai, R. Jagannathan, Chem. Phys. Lett. 436, 155 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    J. Thirumalai, R. Chandramohan, M. Sekar, R. Rajachandrasekar, J. Nanopart. Res. 10, 455 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of the Free State (Qwa Qwa campus)PhuthaditjhabaSouth Africa

Personalised recommendations