Applied Physics A

, 124:341 | Cite as

Improved passivation effect in multicrystalline black silicon by chemical solution pre-treatment

  • Ye Jiang
  • Honglie Shen
  • Tian Pu
  • Chaofan Zheng


Though black silicon has excellent anti-reflectance property, its passivation is one of the main technical bottlenecks due to its large specific surface area. In this paper, multicrystalline black silicon is fabricated by metal assisted chemical etching, and is rebuilt in low concentration alkali solution. Different solution pre-treatment is followed to make surface modification on black silicon before Al2O3 passivation by atomic layer deposition. HNO3 and H2SO4 + H2O2 solution pre-treatment makes the silicon surface become hydrophilic, with contact angle decrease from 117.28° to about 30°. It is demonstrated that when the pre-treatment solution is nitric acid, formed ultrathin SiO x layer between Al2O3 layer and black silicon is found to increase effective carrier lifetime to 72.64 µs, which is obviously higher than that of the unpassivated black silicon. The passivation stacks of SiO x /Al2O3 are proved to be effective double layers for nanoscaled multicrystalline silicon surface.



This work is supported by National Natural Science Foundation of China (61774084), the Fundamental Research Funds for the Central Universities (3082017NP2017106), Joint Frontier Research Project of Jiangsu Province (BY2016003-09), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the open project of Key Laboratory of Silicon Based Electronic Materials of Jiangsu Province (XZWF/YF-QT-2017-0010).


  1. 1.
    T.H. Her, R.J. Finlay, C. Wu et al., Appl. Phys. Lett. 73, 1673–1675 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Z. Yue, H. Shen, Y. Jiang, Appl. Surf. Sci. 271, 402–406 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Liu, T. Lai, H. Li et al., Small 8, 1392–1397 (2012)CrossRefGoogle Scholar
  4. 4.
    B. Hoex, S.B.S. Heil, E. Langereis et al., Appl. Phys. Lett. 89, 042112(1–4) (2006)ADSCrossRefGoogle Scholar
  5. 5.
    K. Saskia, S. Pierre, K. Bishal et al., J. Appl. Phys. 116, 054507 (2014)CrossRefGoogle Scholar
  6. 6.
    J. Bian, L. Zhang, W. Guo et al., Appl. Phys. Express 7, 065504(1–4) (2014)ADSCrossRefGoogle Scholar
  7. 7.
    B. Stefan, E. Peter, M. Verena et al., Energy Procedia 8, 654–659 (2011)CrossRefGoogle Scholar
  8. 8.
    V. D. Mihailetchi, Y. Komatsu et al., Appl. Phys. Lett. 92, 063510(1–3) (2008)ADSCrossRefGoogle Scholar
  9. 9.
    J. Song, J. Jung, H. Um et al., Adv. Mater. Interfaces 1, 1400010 (2014)CrossRefGoogle Scholar
  10. 10.
    D. Simon, P. Jordan, I. Dirnstorfer et al., Solar Energy Mater. Solar Cells 131, 72–76 (2014)CrossRefGoogle Scholar
  11. 11.
    N. Terlinden, G. Dingemans, V. Vandalon et al., J. Appl. Phys. 115, 033708 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    M. Li, H. Shin, K. Jeong et al., Jpn. J. Appl. Phys. 53, 08LC04 (2014)CrossRefGoogle Scholar
  13. 13.
    M. Bhaisare, A. Misra, A. Kottantharayil et al., IEEE J. Photovolat. 3, 930–935 (2013)CrossRefGoogle Scholar
  14. 14.
    N. Konofaos, Microelectron. J. 35, 421–425 (2004)CrossRefGoogle Scholar
  15. 15.
    J. Wang, H. Wang, A.B. Prakoso et al., Nanoscale 7(10), 4559–4565 (2015)ADSGoogle Scholar
  16. 16.
    S. Thomas, P. Sherwood, Anal. Chem. 64(21), 2488–2495 (1992)CrossRefGoogle Scholar
  17. 17.
    S. Basu, P. Singh, J. Huang et al., J. Electrochem. Soc. 154(12), H1041–H1046 (2007)CrossRefGoogle Scholar
  18. 18.
    G. Dingemans, W. Kessels, J. Vac. Sci. Technol. A 30, 040802 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Kuhnhold, P. Saint-Cast, B. Kafle et al., J. Appl. Phys. 116(5), 054507(1–9) (2014)ADSCrossRefGoogle Scholar
  20. 20.
    R. Johnson, G. Lucovsky, I. Baumvol, J. Vac. Sci. Technol. A Vac. Surf. Films 19(4), 1353–1360 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ye Jiang
    • 1
  • Honglie Shen
    • 1
    • 2
  • Tian Pu
    • 1
  • Chaofan Zheng
    • 1
  1. 1.College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and Technology for Energy ConversionNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China
  2. 2.Key Laboratory of Silicon Based Electronic Materials of Jiangsu ProvinceJiangsu GCL Silicon Material Technology Development Co., Ltd.XuzhouPeople’s Republic of China

Personalised recommendations