Skip to main content
Log in

Improved passivation effect in multicrystalline black silicon by chemical solution pre-treatment

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Though black silicon has excellent anti-reflectance property, its passivation is one of the main technical bottlenecks due to its large specific surface area. In this paper, multicrystalline black silicon is fabricated by metal assisted chemical etching, and is rebuilt in low concentration alkali solution. Different solution pre-treatment is followed to make surface modification on black silicon before Al2O3 passivation by atomic layer deposition. HNO3 and H2SO4 + H2O2 solution pre-treatment makes the silicon surface become hydrophilic, with contact angle decrease from 117.28° to about 30°. It is demonstrated that when the pre-treatment solution is nitric acid, formed ultrathin SiO x layer between Al2O3 layer and black silicon is found to increase effective carrier lifetime to 72.64 µs, which is obviously higher than that of the unpassivated black silicon. The passivation stacks of SiO x /Al2O3 are proved to be effective double layers for nanoscaled multicrystalline silicon surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T.H. Her, R.J. Finlay, C. Wu et al., Appl. Phys. Lett. 73, 1673–1675 (1998)

    Article  ADS  Google Scholar 

  2. Z. Yue, H. Shen, Y. Jiang, Appl. Surf. Sci. 271, 402–406 (2013)

    Article  ADS  Google Scholar 

  3. Y. Liu, T. Lai, H. Li et al., Small 8, 1392–1397 (2012)

    Article  Google Scholar 

  4. B. Hoex, S.B.S. Heil, E. Langereis et al., Appl. Phys. Lett. 89, 042112(1–4) (2006)

    Article  ADS  Google Scholar 

  5. K. Saskia, S. Pierre, K. Bishal et al., J. Appl. Phys. 116, 054507 (2014)

    Article  Google Scholar 

  6. J. Bian, L. Zhang, W. Guo et al., Appl. Phys. Express 7, 065504(1–4) (2014)

    Article  ADS  Google Scholar 

  7. B. Stefan, E. Peter, M. Verena et al., Energy Procedia 8, 654–659 (2011)

    Article  Google Scholar 

  8. V. D. Mihailetchi, Y. Komatsu et al., Appl. Phys. Lett. 92, 063510(1–3) (2008)

    Article  ADS  Google Scholar 

  9. J. Song, J. Jung, H. Um et al., Adv. Mater. Interfaces 1, 1400010 (2014)

    Article  Google Scholar 

  10. D. Simon, P. Jordan, I. Dirnstorfer et al., Solar Energy Mater. Solar Cells 131, 72–76 (2014)

    Article  Google Scholar 

  11. N. Terlinden, G. Dingemans, V. Vandalon et al., J. Appl. Phys. 115, 033708 (2014)

    Article  ADS  Google Scholar 

  12. M. Li, H. Shin, K. Jeong et al., Jpn. J. Appl. Phys. 53, 08LC04 (2014)

    Article  Google Scholar 

  13. M. Bhaisare, A. Misra, A. Kottantharayil et al., IEEE J. Photovolat. 3, 930–935 (2013)

    Article  Google Scholar 

  14. N. Konofaos, Microelectron. J. 35, 421–425 (2004)

    Article  Google Scholar 

  15. J. Wang, H. Wang, A.B. Prakoso et al., Nanoscale 7(10), 4559–4565 (2015)

    ADS  Google Scholar 

  16. S. Thomas, P. Sherwood, Anal. Chem. 64(21), 2488–2495 (1992)

    Article  Google Scholar 

  17. S. Basu, P. Singh, J. Huang et al., J. Electrochem. Soc. 154(12), H1041–H1046 (2007)

    Article  Google Scholar 

  18. G. Dingemans, W. Kessels, J. Vac. Sci. Technol. A 30, 040802 (2012)

    Article  Google Scholar 

  19. S. Kuhnhold, P. Saint-Cast, B. Kafle et al., J. Appl. Phys. 116(5), 054507(1–9) (2014)

    Article  ADS  Google Scholar 

  20. R. Johnson, G. Lucovsky, I. Baumvol, J. Vac. Sci. Technol. A Vac. Surf. Films 19(4), 1353–1360 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (61774084), the Fundamental Research Funds for the Central Universities (3082017NP2017106), Joint Frontier Research Project of Jiangsu Province (BY2016003-09), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the open project of Key Laboratory of Silicon Based Electronic Materials of Jiangsu Province (XZWF/YF-QT-2017-0010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglie Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Shen, H., Pu, T. et al. Improved passivation effect in multicrystalline black silicon by chemical solution pre-treatment. Appl. Phys. A 124, 341 (2018). https://doi.org/10.1007/s00339-018-1766-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1766-3

Navigation