Skip to main content

Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

Abstract

Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. R. Eason, Pulsed laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, USA, 2007)

    Google Scholar 

  2. I. Mirza, G. O’Connell, J.J. Wang, J.G. Lunney, Nanotechnology 25, 265301 (2014)

    ADS  Article  Google Scholar 

  3. L.M. Kukreja, S. Verma, D.A. Pathrose, B.T. Rao, J. Phys. D 47, 034015 (2014)

    ADS  Article  Google Scholar 

  4. C.A. Smyth, I. Mirza, J.G. Lunney, E.M. McCabe, Appl. Surf. Sci. 264, 31–35 (2013)

    ADS  Article  Google Scholar 

  5. G.M. Herrera, A.C. Padilla, S.P. Hernandez-Rivera, Nanomaterials 3, 158–172 (2013)

    Article  Google Scholar 

  6. K. Kamakshi, J.P.B. Silva, K.C. Sekhar, G. Marslin, J.A. Moreira, O. Conde, A. Almeida, M. Pereira, M.J.M. Gomes, Appl. Phys. B 122, 108 (2016)

    ADS  Article  Google Scholar 

  7. N. Farid, S.S. Harilal, H. Ding, A. Hassanein, J. Appl. Phys. 115, 033107 (2014)

    ADS  Article  Google Scholar 

  8. V.I. Konov, T.V. Kononenk, E.N. Loubnin, F. Dausinger, D. Breitling, Appl. Phys. A 79, 931–936 (2004)

    ADS  Article  Google Scholar 

  9. R. McCann, C. Hughes, K. Bagga, A. Stalcup, M. Vázquez, D. Brabazon, J. Phys. D Appl. Phys. 50, 245303 (2017)

    ADS  Article  Google Scholar 

  10. M. Boutinguiza, R. Comesaña, F. Lusquiños, A. Riveiro, J.D. Val, J. Pou, Appl. Surf. Sci. 336, 108–111 (2015)

    ADS  Article  Google Scholar 

  11. N. Nedyalkov, A. Nikolov, P. Atanasov, M. Alexandrov, M. Terakawa, H. Shimizu, Opt. Laser Technol. 64, 41–45 (2014)

    ADS  Article  Google Scholar 

  12. E.I. Ageev, D.V. Potorochin, D.V. Sachenko, G.V. Odintsov, Opt. Quant. Electron. 49, 40–48 (2017)

    Article  Google Scholar 

  13. T.M. Khan, M.A. Mujawar, K.E. Siewerska, A. Pokle, T. Donnelly, N. McEvoy, G.S. Duesberg, J.G. Lunney, Nanotechnology 28, 445601 (2017)

    Article  Google Scholar 

  14. H.-P. Wang, J. Lin, Surf. Coat. Technol. 204, 2246–2250 (2010)

    Article  Google Scholar 

  15. Z. Ouyang, L. Meng, P. Raman, T.S. Cho, D.N. Ruzic, J. Phys. D Appl. Phys. 44, 265202 (2011)

    ADS  Article  Google Scholar 

  16. J. Winter, R. Brandenburg, K.-D. Weltmann, Plasma Sources Sci. Technol. 24, 064001 (2015)

    ADS  Article  Google Scholar 

  17. X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012)

    ADS  Article  Google Scholar 

  18. O.V. Penkov, M. Khadem, W.S. Lim, D.E. Kim, J. Coat. Technol. Res. 12, 225–235 (2015)

    Article  Google Scholar 

  19. X.J. Shao, N. Jiang, G.J. Zhang, Z.X. Cao, Appl. Phys. Lett. 101, 253509 (2012)

    ADS  Article  Google Scholar 

  20. Q. Li, J.-T. Li, W.-C. Zhu, X.-M. Zhu, Y.-K. Pu, Appl. Phys. Lett. 95, 141502 (2009)

    ADS  Article  Google Scholar 

  21. N. Jiang, A. Ji, Z. Cao, J. Appl. Phys. 106, 013308 (2009)

    ADS  Article  Google Scholar 

  22. S. Ghosh, T. Liu, M. Bilici, J. Cole, I.M. Huang, D. Staack, D. Mariotti, R.M. Sankaran, J. Phys. D Appl. Phys. 48, 314003 (2015)

    Article  Google Scholar 

  23. A. Ananth, Y.S. Mok, Powder Technol. 269, 259–266 (2015)

    Article  Google Scholar 

  24. W.-J. Liu, X.-J. Guo, C.-L. Chang, J.-H. Lu, Thin Solid Films 517, 4229–4232 (2009)

    ADS  Article  Google Scholar 

  25. V. Vons, Y. Creyghton, A. Schmidt-Ott, J. Nanopart. Res. 8, 721–728 (2006)

    ADS  Article  Google Scholar 

  26. Z. Bahrami, M.R. Khani, B. Shokri, Phys. Plasmas 23, 113501 (2016)

    ADS  Article  Google Scholar 

  27. A.M. Drews, L. Cademartiri, M.L. Chemama, M.P. Brenner, G.M. Whitesides, K.J.M. Bishop, Phys. Rev. E 86, 036314 (2012)

    ADS  Article  Google Scholar 

  28. E. Robert, V. Sarron, T. Darny, D. Ries, S. Dozias, J. Fontane, L. Joly, J.M. Pouvesle, Plasma Sources Sci. Technol. 23, 012003 (2014)

    ADS  Article  Google Scholar 

  29. I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, D. Mariotti, Appl. Phys. Lett. 93, 183102 (2008)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Science Foundation Ireland (SFI) under Investigator Project 12/IP/1662.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Lunney.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, T.M., Pokle, A. & Lunney, J.G. Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma. Appl. Phys. A 124, 336 (2018). https://doi.org/10.1007/s00339-018-1765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1765-4