Applied Physics A

, 124:336 | Cite as

Atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver with flowing gas and flowing atmospheric plasma

  • T. M. Khan
  • A. Pokle
  • J. G. Lunney
Part of the following topical collections:
  1. COLA2017


Two methods of atmospheric pulsed laser deposition of plasmonic nanoparticle films of silver are described. In both methods the ablation plume, produced by a 248 nm, 20 ns excimer laser in gas, is strongly confined near the target and forms a nanoparticle aerosol. For both the flowing gas, and the atmospheric plasma from a dielectric barrier discharge plasma source, the aerosol is entrained in the flow and carried to a substrate for deposition. The nanoparticle films produced by both methods were examined by electron microscopy and optical absorption spectroscopy. With plasma assistance, the deposition rate was significantly enhanced and the film morphology altered. With argon gas, isolated nanoparticles of 20 nm size were obtained, whereas in argon plasma, the nanoparticles are aggregated in clusters of 90 nm size. Helium gas also leads to the deposition of isolated nanoparticles, but with helium plasma, two populations of nanoparticles are observed: one of rounded particles with a mean size of 26 nm and the other of faceted particles with a mean size 165 nm.



This research was supported by Science Foundation Ireland (SFI) under Investigator Project 12/IP/1662.


  1. 1.
    R. Eason, Pulsed laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, USA, 2007)Google Scholar
  2. 2.
    I. Mirza, G. O’Connell, J.J. Wang, J.G. Lunney, Nanotechnology 25, 265301 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    L.M. Kukreja, S. Verma, D.A. Pathrose, B.T. Rao, J. Phys. D 47, 034015 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    C.A. Smyth, I. Mirza, J.G. Lunney, E.M. McCabe, Appl. Surf. Sci. 264, 31–35 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    G.M. Herrera, A.C. Padilla, S.P. Hernandez-Rivera, Nanomaterials 3, 158–172 (2013)CrossRefGoogle Scholar
  6. 6.
    K. Kamakshi, J.P.B. Silva, K.C. Sekhar, G. Marslin, J.A. Moreira, O. Conde, A. Almeida, M. Pereira, M.J.M. Gomes, Appl. Phys. B 122, 108 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    N. Farid, S.S. Harilal, H. Ding, A. Hassanein, J. Appl. Phys. 115, 033107 (2014)ADSCrossRefGoogle Scholar
  8. 8.
    V.I. Konov, T.V. Kononenk, E.N. Loubnin, F. Dausinger, D. Breitling, Appl. Phys. A 79, 931–936 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    R. McCann, C. Hughes, K. Bagga, A. Stalcup, M. Vázquez, D. Brabazon, J. Phys. D Appl. Phys. 50, 245303 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    M. Boutinguiza, R. Comesaña, F. Lusquiños, A. Riveiro, J.D. Val, J. Pou, Appl. Surf. Sci. 336, 108–111 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    N. Nedyalkov, A. Nikolov, P. Atanasov, M. Alexandrov, M. Terakawa, H. Shimizu, Opt. Laser Technol. 64, 41–45 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    E.I. Ageev, D.V. Potorochin, D.V. Sachenko, G.V. Odintsov, Opt. Quant. Electron. 49, 40–48 (2017)CrossRefGoogle Scholar
  13. 13.
    T.M. Khan, M.A. Mujawar, K.E. Siewerska, A. Pokle, T. Donnelly, N. McEvoy, G.S. Duesberg, J.G. Lunney, Nanotechnology 28, 445601 (2017)CrossRefGoogle Scholar
  14. 14.
    H.-P. Wang, J. Lin, Surf. Coat. Technol. 204, 2246–2250 (2010)CrossRefGoogle Scholar
  15. 15.
    Z. Ouyang, L. Meng, P. Raman, T.S. Cho, D.N. Ruzic, J. Phys. D Appl. Phys. 44, 265202 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    J. Winter, R. Brandenburg, K.-D. Weltmann, Plasma Sources Sci. Technol. 24, 064001 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    O.V. Penkov, M. Khadem, W.S. Lim, D.E. Kim, J. Coat. Technol. Res. 12, 225–235 (2015)CrossRefGoogle Scholar
  19. 19.
    X.J. Shao, N. Jiang, G.J. Zhang, Z.X. Cao, Appl. Phys. Lett. 101, 253509 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Q. Li, J.-T. Li, W.-C. Zhu, X.-M. Zhu, Y.-K. Pu, Appl. Phys. Lett. 95, 141502 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    N. Jiang, A. Ji, Z. Cao, J. Appl. Phys. 106, 013308 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    S. Ghosh, T. Liu, M. Bilici, J. Cole, I.M. Huang, D. Staack, D. Mariotti, R.M. Sankaran, J. Phys. D Appl. Phys. 48, 314003 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Ananth, Y.S. Mok, Powder Technol. 269, 259–266 (2015)CrossRefGoogle Scholar
  24. 24.
    W.-J. Liu, X.-J. Guo, C.-L. Chang, J.-H. Lu, Thin Solid Films 517, 4229–4232 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    V. Vons, Y. Creyghton, A. Schmidt-Ott, J. Nanopart. Res. 8, 721–728 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Bahrami, M.R. Khani, B. Shokri, Phys. Plasmas 23, 113501 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    A.M. Drews, L. Cademartiri, M.L. Chemama, M.P. Brenner, G.M. Whitesides, K.J.M. Bishop, Phys. Rev. E 86, 036314 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    E. Robert, V. Sarron, T. Darny, D. Ries, S. Dozias, J. Fontane, L. Joly, J.M. Pouvesle, Plasma Sources Sci. Technol. 23, 012003 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    I. Levchenko, K. Ostrikov, K. Diwan, K. Winkler, D. Mariotti, Appl. Phys. Lett. 93, 183102 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and CRANN, Trinity College DublinThe University of DublinDublin 2Ireland

Personalised recommendations