Applied Physics A

, 124:344 | Cite as

Influence of morphology and structure on hydrophilicity of TiO2NTs

  • Liyun Xiang
  • Jing Ya
  • Ruifeng Ye
  • Lixia Li


The TiO2NTs with special three-dimensional tubular morphology was prepared by anodic oxidation method, the methods of nonmetal doping, Ti3+ self-doping and semiconductor recombination were used as the modification of TiO2NTs. The contact angles of different samples after modification were measured. The structure and morphology of the samples were characterized by SEM, EDS and XPS, and the influence of different factors on the contact angle of TiO2NTs was investigated. The results show that the hydrophilicity is closely related to the morphology and structure of the material. The special tubular structure of TiO2NTs has a smaller contact angle, and the semiconductor composite will block the nozzle and increase the contact angle to a certain extent. Under the premise of not changing the morphology, doping modification can make TiO2NTs achieve hydrophilicity under visible light.



The authors gratefully acknowledge financial support from Tianjin Science and Technology Support Plan Key Projects (no. 12ZCZDJC35600).


  1. 1.
    Y. Takata, S. Hidaka, M. Masuda, T. Ito, Int. J. Energy Res. 27, 111–119 (2003)CrossRefGoogle Scholar
  2. 2.
    Z.H. Liu, Y.H. Qiu, J. Heat Transf. ASME 128, 726–729 (2006)CrossRefGoogle Scholar
  3. 3.
    L. Liao, R. Bao, Z.H. Liu, Heat. Mass Transf. 44, 1447–1453 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    G. Piret, Y. Coffinier, C. Roux, O. Melnyk, R. Boukherroub, Langmuir 24, 1670–1672 (2008)CrossRefGoogle Scholar
  5. 5.
    E. Galopin, G. Piret, S. Szunerits, Y. Lequette, C. Faille, R. Boukherroub, Langmuir 26, 3479–3484 (2010)CrossRefGoogle Scholar
  6. 6.
    C. Byon, Y. Nam, S.J. Kim, Y.S. Ju, J. Appl. Phys. 107, 066102 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388, 431–432 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    J. Yu, J.C. Yu, W. Ho et al., Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films [J]. New J. Chem. 26(5), 607–613 (2002)CrossRefGoogle Scholar
  9. 9.
    R.N. Wenzel, Surface roughness and contact angle [J]. J Phys. Colloid Chem. 53(9), 1466–1467 (1948)CrossRefGoogle Scholar
  10. 10.
    A.B.D. Cassie, Contact angles hysteresis to weting by water [J]. Discuss. Faraday Soc. 3, 11–14 (1984)CrossRefGoogle Scholar
  11. 11.
    W. Choi, A. Tuteja, J.M. Mabry et al. W. Choi, A. Tuteja, J.M. Mabry, R.E. Cohen, G.H. McKinley, A modified Cassie–Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. J. Colloid Interf. Sci. 339(1), 208–216 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    X. Cheng, Q. Cheng, L. Bo et al., One-step construction of N/Ti3+ codoped TiO2 nanotubes photoelectrode with high photoelectrochemical and photoelectrocatalytic performance [J]. Electrochim. Acta 186, 442–448 (2015)CrossRefGoogle Scholar
  13. 13.
    X. Liang, L. Wang, F. Ma et al., Degradation of atrazine from the riparian zone with the PEC system based on the anode of N–S–TiO2 nanocrystal-modified TiO2 nanotubes and the activated carbon photocathode [J]. RSC Adv. 6(93), 89994–90001 (2016)CrossRefGoogle Scholar
  14. 14.
    R. Asahi, T. Morikawa, T. Ohwaki et al., Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science 293, 269–271 (2001)CrossRefGoogle Scholar
  15. 15.
    S. Sakthivel, M. Janczarek, H. Kisch, Visible light activity and photoelectrochemical properties of nitrogen-oped TiO2 [J]. J. Phys. Chem. 108, 19384–19387 (2004)CrossRefGoogle Scholar
  16. 16.
    J. Yu, M. Zhou, B. Cheng et al., Preparation, characterization and hotocatalytic of in situ N, S-codoped TiO2 powders [J]. J. Mol. Catal. A 246, 176 (2006)CrossRefGoogle Scholar
  17. 17.
    S.A. Bakar, C. Ribeiro, An insight toward the photocatalytic activity of S doped 1-D TiO2 nanorods prepared via novel route: as promising platform for environmental leap [J]. J. Mol. Catal. A Chem. 412, 78–92 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Cui, W. Zhao, C. Yang, H. Yin, T. Lin, Y. Shan, Y. Xie, H. Gu, F. Huang, Black TiO2 nanotube arrays for high-efficiency photoelectrochemical water-splitting [J] Mater. Chem. J. A 2, 8612–8616 (2014)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, C. Yang, T. Lin, H. Yin, P. Chen, D. Wan, F. Xu, F. Huang, J. Lin, X. Xie, M. Jiang, H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance [J]. Adv. Funct. Mater. 23, 5444–5450 (2013)CrossRefGoogle Scholar
  20. 20.
    L. Pan, J.J. Zou, S.B. Wang, Z.F. Huang, A. Yu, L. Wang, X.W. Zhang, Quantum dot self-decorated TiO2 nanosheets [J]. Chem. Commun. 49, 6593 (2013)CrossRefGoogle Scholar
  21. 21.
    W. Wang, Y.R. Ni, C.H. Lu, Z.Z. Xu, Nano-p-n junction heterostructures enhanced TiO2 nanobelts biosensing electrode [J]. RSC Adv. 2, 8286 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Yu, W. Wang, B. Cheng et al., Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment [J]. J. Phys. Chem. C 113(16), 6743–6750 (2009)CrossRefGoogle Scholar
  23. 23.
    M.A. Zhenye, L.I. Fengsheng, Y.E. Mingquan et al., Structure and property characterization of nanoparticles of ferric oxide/oleic acid composites [J]. J. Nanjing Univ. Sci. Technol. (4), 436–444 (2004)Google Scholar
  24. 24.
    Y. Huang, Y. Lai, S. Shi et al., Copper sulfide nanoparticles with phospholipid-PEG coating for in vivo near-infrared photothermal cancer therapy [J]. Chem. Asian J. 10(2), 370 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTianjin Chengjian UniversityTianjinChina

Personalised recommendations