Applied Physics A

, 124:339 | Cite as

Spray pyrolytic deposition of α-MoO3 film and its use in dye-sensitized solar cell

  • Parvin S. Tamboli
  • Chaitali V. Jagtap
  • Vishal S. Kadam
  • Ravi V. Ingle
  • Rajiv S. Vhatkar
  • Smita S. Mahajan
  • Habib M. Pathan


Thermal decomposition of ammonium para molybdate tetrahydrate precursor has been studied to determine degradation temperatures in air atmosphere. Current work explores the synthesis of α-MoO3 films by an economical spray pyrolysis technique using ammonium para molybdate tetrahydrate precursor in the presence of compressed air. A variety of characterization techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–visible spectroscopy, Fourier transform infrared, and Raman spectroscopy were carried out, and the studies have confirmed that orthorhombic phase formation of MoO3 takes place with spongy mesh-type structure. The study of electro-catalytic activity of α-MoO3 in titania-based dye-sensitized solar cell is also carried out by cyclic voltammetry, electrochemical impedance spectroscopy, and Tafel curves to evaluate its performance as a counter electrode.



Authors are thankful FAST-TRACK, Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, for partial financial support.

Supplementary material

339_2018_1763_MOESM1_ESM.docx (799 kb)
Supplementary material 1 (DOCX 798 KB)


  1. 1.
    H.H. Kung, Transition Metal Oxides. Surface Chemistry and Catalysis (Elsevier Science, Amsterdam, 1989), p. 45Google Scholar
  2. 2.
    S.S. Mahajan, S.H. Mujawar, P.S. Shinde, A.I. Inamdar, P.S. Patil, Concentration dependent structural, optical and electrochromic properties of MoO3 thin films. Int. J. Electrochem. Sci. 3, 953–960 (2008)Google Scholar
  3. 3.
    C.C. Chang, J.Y. Luo, T.K. Chen, K.W. Yeh, T.W. Huang, C.H. Hsu, W.H. Chao, C.T. Ke, P.C. Hsu, M.J. Wang, M.K. Wu, Pulsed laser deposition of (MoO3)1–x(V2O5)x thin films preparation, characterization and gasochromic studies. Thin Solid Films 519, 1552–1557 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    D. Ban, S. Deng, N. Xu, J. Chen, J. She, F. Liu, Improved field emission characteristics of large-area films of molybdenum trioxide microbelt. J Nanomater. 2010, 1–6 (2010)CrossRefGoogle Scholar
  5. 5.
    R. Sivakumar, R. Gopalakrishnan, M. Jayachandran, C. Sanjeeviraja, Characterization on electron beam evaporated α-MoO3 thin films by the influence of substrate temperature. Curr. Appl. Phys. 7, 51–59 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    A. Hojabri, F. Hajakbari, A.E. Meibodi, Structural and optical properties of nanocrystalline α-MoO3 thin films prepared at different annealing temperatures. J. Theor. Appl. Phys. 9, 67–73 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    S. Subbarayudu, V. Madhavi, S. Uthanna, Growth of films by RF magnetron sputtering: studies on the structural, optical, and electrochromic properties. Adv. Mater. Lett. 4, 637–642 (2013)CrossRefGoogle Scholar
  8. 8.
    H.M. Martínez, J. Torres, L.D. López-Carreño, M.E. Rodríguez-García, The effect of substrate temperature on the optical properties of MoO3 nano-crystals prepared using spray pyrolysis. J. Supercond. Nov. Magn. 26, 2485–2488 (2013)CrossRefGoogle Scholar
  9. 9.
    Y.J. Lee, C.W. Park, D.G. Kim, W.T. Nichols, S.T. Oh, Y.D. Kim, (2010) MoO3 thin film synthesis by chemical vapor transport of volatile MoO3(OH)2. J. Ceram. Process. Res. 11, 52–55Google Scholar
  10. 10.
    E.M. McCarron III, J.C. Calabrese E.M. McCarron, J.C. Calabrese, The growth and single crystal structure of a high pressure phase of molybdenum trioxide: MoO3-II. J. Solid State Chem. 1(1), 121–125 (1991) (91:121–125) ADSCrossRefGoogle Scholar
  11. 11.
    J.B. De Paiva Jr., W.R. Monteiro, M.A. Zacharias, J.A. Rodrigues, G.G. Cortez, Characterization and catalytic behavior of MoO3/V2O5/Nb2O5 systems in isopropanol decomposition. Braz. J. Chem. Eng. 23, 517–524 (2006)CrossRefGoogle Scholar
  12. 12.
    S.S. Mahajan, S.H. Mujawar, P.S. Shinde, A.I. Inamdar, P.S. Patil, Structural, morphological, optical and electrochromic properties of Ti-doped MoO3 thin films. Sol. Energy Mater. Sol. Cells 93, 183–187 (2009)CrossRefGoogle Scholar
  13. 13.
    U.K. Sen, S. Mitra, electrochemical activity of α-MoO3 nano-belts as lithium-ion battery cathode. RSC Adv. 2, 11123–11131 (2012)CrossRefGoogle Scholar
  14. 14.
    B.M. Sánchez, T. Brousse, C.R. Castro, V.N. Patrick, S. Grant, An investigation of nanostructured thin film MoO3 based supercapacitor electrodes in an aqueous electrolyte. J Electrochim. Acta 91, 253–260 (2013)CrossRefGoogle Scholar
  15. 15.
    H.M. Martínez, J. Torres, M.E. Rodríguez-García, L.L. Carreño, Gas sensing properties of nanostructured MoO3 thin films prepared by spray pyrolysis. Phys. B Condens. Matter 407, 3199–3202 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    J. Wang, K.C. Rose, C.M. Lieber, Load-independent friction: MoO3 nanocrystal lubricants. J. Phys. Chem. B 103, 8405–8409 (1999)CrossRefGoogle Scholar
  17. 17.
    M. Kovendhan, D.P. Joseph, P. Manimuthu, S. Ganesan, P. Maruthamuthu, S.A. Suthanthiraraj, C. Venkateswaran, R. Mohan, MoO3 film counter electrode for dye sensitized solar cell. AIP Conf. Proc. 1349, 669–670 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    G.R. Mutta, S.R. Popuri, J.I. Wilson, N.S. Bennett, Sol–gel spin coated well adhered MoO3 thin films as an alternative counter electrode for dye sensitized solar cells. Solid State Sci. 61, 84–88 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    A.T. Yadav, P.P. Magar, V.S. Kadam, C.V. Jagtap, C.S. Pawar, chemically deposited nickel oxide as counter electrode for dye sensitized solar cell. J. Mater. Sci. Mater. Electron. 27, 12297–12301 (2016)CrossRefGoogle Scholar
  20. 20.
    D. Song, Z. Chen, P. Cui, M. Li, X. Zhao, Y. Li, L. Chu, NH3-treated WO3 as low-cost and efficient counter electrode for dye-sensitized solar cells. Nanoscale Res. Lett. 10, 16 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    T.N. Murakami, M. Grätzel, Counter electrodes for DSC: application of functional materials as catalysts. Inorg. Chim. Acta 361, 572–580 (2008)CrossRefGoogle Scholar
  22. 22.
    E. Olsen, G. Hagen, S.E. Lindquist, Dissolution of platinum in methox propionitrile containing LiI/I2. Sol. Energy Mater. Sol. Cells 63, 267–273 (2000)CrossRefGoogle Scholar
  23. 23.
    C.F. Lin, Y.C. Chou, J.F. Haung, P.H. Chen, H.C. Han, K.Y. Chiu, Y.O. Su, Dye sensitized solar cells with carbon black as counter electrodes. Jpn. J. Appl. Phys. 55, 03CE01 (2016)CrossRefGoogle Scholar
  24. 24.
    W.J. Lee, E. Ramasamy, D.Y. Lee, J.S. Song, Efficient dye-sensitized solar cells with catalytic multiwall carbon nanotube counter electrodes. ACS Appl. Mater. Interfaces 21, 1145–1149 (2009)CrossRefGoogle Scholar
  25. 25.
    X. Meng, C. Yu, B. Lu, J. Yang, J. Qiu, Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells. Nano Energy 22, 59–69 (2016)CrossRefGoogle Scholar
  26. 26.
    C.W. Kung, H.W. Chen, C.Y. Lin, K.C. Huang, R. Vittal, K.C. Ho, CoS acicular nanorod arrays for the counter electrode of an efficient dye-sensitized solar cell. ACS Nano 6, 7016–7025 (2012)CrossRefGoogle Scholar
  27. 27.
    H. Sun, D. Qin, S. Huang, X. Guo, D. Li, Y. Luo, Q. Meng, Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique. Energy Environ. Sci. 4, 2630–2637 (2011)CrossRefGoogle Scholar
  28. 28.
    B. Lei, G.R. Li, X.P. Gao, Morphology dependence of molybdenum disulfide transparent counter electrode in dye-sensitized solar cells. J. Mater. Chem. A 2, 3919–3925 (2014)CrossRefGoogle Scholar
  29. 29.
    C. Yu, X. Meng, X. Song, S. Liang, Q. Dong, G. Wang, C. Hao, X. Yang, T. Ma, P.M. Ajayan, J. Qiu, Graphene-mediated highly-dispersed MoS2 nanosheets with enhanced triiodide reduction activity for dye-sensitized solar cells. Carbon 100, 474–483 (2016)CrossRefGoogle Scholar
  30. 30.
    M. Wu, X. Lin, A. Hagfeldt, T. Ma, Low-cost molybdenum carbide and tungsten carbide counter electrodes for dye-sensitized solar cells. Angew. Chem. Int. Ed. 50, 3520–3524 (2011)CrossRefGoogle Scholar
  31. 31.
    J. Song, G.R. Li, K. Xi, B. Lei, X.P. Gao, R.V. Kumar, Enhancement of diffusion kinetics in porous MoN nanorods-based counter electrode in a dye-sensitized solar cell. J. Mater. Chem. A 2, 10041–10047 (2014)CrossRefGoogle Scholar
  32. 32.
    H. Xu, X. Zhang, C. Zhang, Z. Liu, X. Zhou, S. Pang, X. Chen, S. Dong, Z. Zhang, L. Zhang, P. Han, Nanostructured titanium nitride/PEDOT: PSS composite films as counter electrodes of dye-sensitized solar cells. ACS Appl. Mater. Interfaces 4, 1087–1092 (2012)CrossRefGoogle Scholar
  33. 33.
    X. Xu, D. Huang, K. Cao, M. Wang, S.M. Zakeeruddin, M. Grätzel, Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells. Sci. Rep. 1489, 10–38 (2013)Google Scholar
  34. 34.
    W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10, 1555–1558 (2008)CrossRefGoogle Scholar
  35. 35.
    I. Ahmad, J.E. McCarthy, A. Baranov, Y.K. Gunko, Development of graphene nano-platelet based counter electrodes for solar cells. Materials 8, 5953–5973 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    X. Meng, C. Yu, X. Song, Z. Liu, B. Lu, C. Hao, J. Qiu, Rational design and fabrication of sulfur-doped porous graphene with enhanced performance as a counter electrode in dye-sensitized solar cells. J. Mater. Chem. A 5, 2280–2287 (2017)CrossRefGoogle Scholar
  37. 37.
    X. Meng, C. Yu, X. Song, Y. Liu, S. Liang, Z. Liu, C. Hao, J. Qiu, Nitrogen-doped graphene nanoribbons with surface enriched active sites and enhanced performance for dye-sensitized solar cells. Adv. Energy Mater. 5, 11 (2015)CrossRefGoogle Scholar
  38. 38.
    M.B. Rajendra Prasad, H.M. Pathan, Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells. Nanotechnology 27, 145402 (2016)CrossRefGoogle Scholar
  39. 39.
    W.M. Shaheen, M.M. Selim, Thermal decompositions of pure and mixed manganese carbonate and ammonium molybdate tetra hydrate. J. Therm. Anal. Calorim. 59, 961–970 (2000)CrossRefGoogle Scholar
  40. 40.
    Y. Zhoulan, L.I. Xinhai, Z. Qinshengchen, C. Shaoyi, Thermal decomposition of ammonium molybdate. Trans. NFsoc 6, 26–28 (1995)Google Scholar
  41. 41.
    C.S. Oh, Y.O. Park, N. Hasolli, H.G. Kim, S.B. Shin, Y.S. Won, Y.H. Kim, Isothermal decomposition of ammonium molybdate to molybdenum trioxide in a fluidized bed reactor. Korean J. Mater. Res. 25, 10 (2015)Google Scholar
  42. 42.
    A. Chithambararaj, D.B. Mathi, N.R. Yogamalar, A.C. Bose, Structural evolution and phase transition of [NH4] 6Mo7O24. 4H2O to 2D layered MoO3–x. Mater. Res. Express 2, 055004 (2015)ADSCrossRefGoogle Scholar
  43. 43.
    Z. Diao, F.L. Kwong, J. Li, J. Lian, K.T. Lai, D.H. Ng, Catalytic activity of biomorphic α-MoO3 in the degradation of methyl violet dye. Environ. Eng. Sci. 29, 860–865 (2012)CrossRefGoogle Scholar
  44. 44.
    N. Mallikarjuna, A. Venkataraman, Synthesis of molybdenum oxide by thermal decomposition of molybdenum acetylacetonate sol–gel. J. Therm. Anal. Calorim. 68, 901–907 (2002)CrossRefGoogle Scholar
  45. 45.
    A. Chithambararaj, A.C. Bose, Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensional structure. Beilstein J. Nanotechnol. 2, 585–592 (2011)CrossRefGoogle Scholar
  46. 46.
    T.N. Kovacs, D. Hunyadi, A.L. de Lucena, I.M. Szilagyi, Thermal decomposition of ammonium molybdates. J. Therm. Anal. Calorim. 124, 1013–1021 (2016)CrossRefGoogle Scholar
  47. 47.
    N.K. Perkgoz, M. Bay, Investigation of single-wall MoS2 monolayer flakes grown by chemical vapor deposition. Nano Micro Lett. 8, 70–79 (2016)CrossRefGoogle Scholar
  48. 48.
    D.V. Ahire, S.D. Shinde, G.E. Patil, K.K. Thakur, V.B. Gaikwad, V.G. Wagh, G.H. Jain, Preparation of MoO3 thin films by spray pyrolysis and its gas sensing performance. Int. J. Smart Sens. Intell. Syst. 5, 592–605 (2012)Google Scholar
  49. 49.
    M. Dieterle, G. Weinberg, G. Mestl, Raman spectroscopy of molybdenum oxides part I. Structural characterization of oxygen defects in MoO3– x by DR UV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 4, 812–821 (2002)CrossRefGoogle Scholar
  50. 50.
    P. Wongkrua, T. Thongtem, S. Thongtem, Synthesis of h-and α-MoO3 by refluxing and calcination combination: phase and morphology transformation, photocatalysis, and photosensitization. J. Nanomater. 2013, 79 (2013)CrossRefGoogle Scholar
  51. 51.
    A. Klinbumrung, T. Thongtem, S. Thongtem, Characterization of orthorhombic α-MoO3 microplates produced by a microwave plasma process. J. Nanomater. 2012, 930763 (2012). CrossRefGoogle Scholar
  52. 52.
    T.H. Chiang, H.C. Yeh, The synthesis of α-MoO3 by. Ethylene Glycol. Matlab 6, 4609–4625 (2013)Google Scholar
  53. 53.
    S. Phadungdhitidhada, P. Mangkorntong, S. Choopun, N. Mangkorntong, Raman scattering and electrical conductivity of nitrogen implanted MoO3 whiskers. Ceram. Int. 34, 1121–1125 (2008)CrossRefGoogle Scholar
  54. 54.
    K. Ajito, L.A. Nagahara, D.A. Tryk, K. Hashimoto, A. Fujishima, Study of the photochromic properties of amorphous MoO3 films using Raman microscopy. J. Phys. Chem. 99, 16383–16388 (1995)CrossRefGoogle Scholar
  55. 55.
    A. Stoyanova, R. Iordanova, M. Mancheva, Y. Dimitriev, Synthesis and structural characterization of MoO3 phases obtained from molybdic acid by addition of HNO3 and H2O2. J. Optoelectron. Adv. Mater. 11, 1127–1131 (2009)Google Scholar
  56. 56.
    D.E. Diaz-Droguett, R.E. Far, V.M. Fuenzalida, A.L. Cabrera, In situ-Raman studies on thermally induced structural changes of porous MoO3 prepared in vapor phase under He and H2. Mater. Chem. Phys. 134, 631–638 (2012)CrossRefGoogle Scholar
  57. 57.
    J.V. Silveira, J.A. Batista, G.D. Saraiva, J. Mendes Filho, A.G. Souza Filho, S. Hu, X. Wang, Temperature dependent behavior of single walled MoO3 nanotubes: a Raman spectroscopy study. Vib. Spectrosc. 54, 179–183 (2010)CrossRefGoogle Scholar
  58. 58.
    G. Yue, F. Li, F. Tan, G. Li, C. Chen, J. Wu, Nickel sulfide films with significantly enhanced electrochemical performance induced by self-assembly of 4-aminothiophenol and their application in dye-sensitized solar cells. RSC Adv. 4, 64068–6407411 (2014)CrossRefGoogle Scholar
  59. 59.
    C.J. Raj, K. Prabakar, A.D. Savariraj, H.J. Kim, Surface reinforced platinum counter electrode for quantum dots sensitized solar cells. Electrochim. Acta 103, 231–236 (2013)CrossRefGoogle Scholar
  60. 60.
    P.S. Tamboli, M.R. Prasad, V.S. Kadam, R.S. Vhatkar, H.M. Pathan, S.S. Mahajan, α-MoO3-C composite as counter electrode for quantum dot sensitized solar cells. Sol. Energy Mater. Sol. Cells 161, 96–101 (2017)CrossRefGoogle Scholar
  61. 61.
    H.W. Zheng, X. Liang, Y.H. Yu, K. Wang, X.A. Zhang, B.Q. Men, C.L. Diao, C.X. Peng, G.T. Yue, Bi5FeTi3O15 nanofibers/graphene nanocomposites as an effective counter electrode for dye-sensitized solar cells. Nanoscale Res. Lett. 12, 18 (2017)ADSCrossRefGoogle Scholar
  62. 62.
    Y. Duan, Q. Tang, B. He, R. Li, L. Yu, Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency. Nanoscale 6, 12601–12608 (2014)ADSCrossRefGoogle Scholar
  63. 63.
    H. Wang, B. Wang, J. Yu, Y. Hu, C. Xia, J. Zhang, R. Liu, Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes. Sci. Rep. 5, 9305 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    J. Essner, Dye sensitized solar cells: optimization of Grätzel solar cells towards plasmonic enhanced photovoltaics. Dissertation, Kansas State University (2011)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Parvin S. Tamboli
    • 1
    • 2
  • Chaitali V. Jagtap
    • 3
  • Vishal S. Kadam
    • 3
  • Ravi V. Ingle
    • 3
  • Rajiv S. Vhatkar
    • 2
  • Smita S. Mahajan
    • 1
  • Habib M. Pathan
    • 3
  1. 1.Department of PhysicsJaysingpur CollegeJaysingpurIndia
  2. 2.Department of PhysicsShivaji UniversityKolhapurIndia
  3. 3.Advanced Physics Laboratory, Department of PhysicsSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations