Applied Physics A

, 124:347 | Cite as

High efficiencies for laser cleaning of glassware irradiated from the back: application to glassware historical objects

  • Gabriel M. BilmesEmail author
  • Josué Vallejo
  • César Costa Vera
  • Martin E. Garcia


We present a systematic study of laser cleaning of black paint deposited on both standard and frosted glasses. We performed laser cleaning of black paint layers of different thicknesses in both front- and backside laser irradiation geometries. Using laser ablation induced photoacoustics (LAIP), we determined the ablation threshold of the paint that turns out to be independent of the paint thickness and substrate’s properties. To characterize the efficiency of the cleaning process as a function of the number of laser shots, we measured the transmission of the glass in the ablated region and simultaneously the amplitude of the acoustic signal generated by the ablation process. We show that laser cleaning is much more effective when the glass sample is irradiated from the back. To explain this effect, we propose a phenomenological model. This model also predicts the existence of a critical thickness, above which backside cleaning is no longer efficient. The method of back incidence laser cleaning was successfully applied to two real objects, namely a piece of advertising glass covered with black paint and an antique glass bottle with black dirt inside, both archeological objects founded in excavations made in the city of Buenos Aires.



This work was partially supported by Ministerio de Ciencia, Tecnología e Innovación Productiva de Argentina and by “Deutscher Akademischer Austauschdienst” (DAAD) in the framework of the programme PROALAR Argentina-Germany 2015–2016. GMB is researcher of the Comisión de Investigaciones Científicas de la Provincia Buenos Aires (CIC-BA). The authors thank CEMECA (La Plata, Argentina) for the measurements for the paint layer thickness.


  1. 1.
    B.S. Luk’yanchuk (ed.), Laser Cleaning, Series: Optical Physics, Applied Physics and Materials Science (World Scientific, New Jersey, 2002)Google Scholar
  2. 2.
    D.M. Kane (ed.) Laser Cleaning II Series: Optical Physics, Applied Physics and Materials Science (World Scientific, New Jersey, 2007)Google Scholar
  3. 3.
    N.M. Bulgakova, A.V. Bulgakov, Pulsed laser ablation of solids: transition from normal vaporization to phase explosion. App. Phys. A 73, 199–208 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    N. Arnold, Theoretical description of dry laser cleaning. Appl. Surf. Sci. 206–209, 15–22 (2003)CrossRefGoogle Scholar
  5. 5.
    A.C. Tam, W.P. Leung, W. Zapka, W. Ziemlich, Laser-cleaning technology for removal of surface particulates. J. Appl. Phys. 71, 3515–3523 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    Yu.N. Petrov, Laser cleaning of semiconductor surface. Proc. SPIE 1352, 266–273 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    W. Zappa, K. Asch, K. Meissner, European Patent, EP 0297506 A2 (1989)Google Scholar
  8. 8.
    K. Imen, S.J. Lee, S.D. Allen, U.S. Patent, Serial No. 4,987,286 (1991)Google Scholar
  9. 9.
    Y.F. Lu, W.D. Song, B.W. Ang, D.S.H. Chan, T.S. Low, A theoretical model for laser removal of particles from solid surface. Appl. Phys. A 65, 9–13 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    V. Zafiropulos, C. Fotakis, Laser conservation: an introduction, chapter 6, in Lasers in the Conservation of Painted Artworks, ed. by M. Cooper (Butterworth Heineman, Oxford, 1998)Google Scholar
  11. 11.
    D. Bauerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin, 2000)CrossRefGoogle Scholar
  12. 12.
    K. Dickmann, C. Fotakis, J.F. Asmus, Lasers in the Conservation of Artworks: LACONA V Proceedings (Springer, Berlin, 2005)CrossRefGoogle Scholar
  13. 13.
    C. Fotakis, Lasers in the Preservation of Cultural Heritage: Principles and Applications (Taylor and Francis, New York, 2007)Google Scholar
  14. 14.
    Y.F. Lu, S. Komuro, Y. Aoyagi, Laser-induced removal of fingerprints from glass and quartz surfaces. Jpn. J. Appl. Phys. 33(8), 4691–4696 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    M. Arronte, T. Flores Reyes, L. Ponce Cabrera, G.M. Bilmes, Laser cleaning of glassware by opposite incidence. III International Conference in the Conservation of Artworks. LACONA III (1999)Google Scholar
  16. 16.
    L. Ponce Cabrera, T. Flores Reyes, M. Arronte García, G.M. Bilmes, Cuban Patent Nro.: 22804: Método de limpieza de superficie de láminas de materiales trasparentes en la zona visible e infrarroja del espectro empleando un láser que incide a través de la lámina (1999)Google Scholar
  17. 17.
    F. Fekrsanati, J. Hildenhagena, K. Dickmanna, C. Trollb, U. Drewelloc, C. Olaineckd, UV-laser radiation: basic research of the potential for cleaning stained glass. J. Cult. Heritage 1, S155–S160 (2000)CrossRefGoogle Scholar
  18. 18.
    K. Dickmann, J. Hildenhagen, P. Mottner, UV laser safely cleans historical glass. Photonics Spectra 35, 169–172 (2001)Google Scholar
  19. 19.
    F. Fekrsanati, S. Klein, J. Hildenhagen, K. Dickmann, Y. Marakis, A. Manousaki, V. Zafiropulos, Investigations regarding the behaviour of historic glass and its surface layers towards different wavelengths applied for laser cleaning. J. Cult. Heritage 2, 253–258 (2001)CrossRefGoogle Scholar
  20. 20.
    R. Hömich, K. Dickmann, P. Mottner, J. Hildenhagen, E. Müller, Laser cleaning of stained glass windows—final results of a research project. J. Cult. Heritage 4, 112s–117s (2003)CrossRefGoogle Scholar
  21. 21.
    S. Beyer, V. Tornari, D. Gornicki, Proceedings of SPIE, vol. 5063. Fourth International Symposium on laser Precision Microfabrication, ed. by I. Miyamoto, A. Ostendorf, K. Sugioka, H. Helvajian (2003)Google Scholar
  22. 22.
    F. Bloisi, G. Di Blasio, L. Vicari, M. Zoncheddu, One-dimensional modelling of ‘verso’ laser cleaning. J. Mod. Opt. 53(08), 1121–1129 (2006)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    A.M. Joyce, D.M. Kane, Comparison of front and back laser irradiation in laser cleaning of silica particles from silica glass. In: PICALO 2006—2nd Pacific International Conference on Applications of Laser and Optics—Conference Proceedings (Laser Institute of America, 2006)Google Scholar
  24. 24.
    A. Barone, F. Bloisi, L. Vicar, “Verso” laser cleaning of mechanically thin films. Appl. Surf. Sci. 208209, 468–473 (2003)CrossRefGoogle Scholar
  25. 25.
    Y.F. Lu, S. Aoyagi, Acoustic emission in laser surface cleaning for real-time monitoring. Jpn. J. Appl. Phys. 34, L1557–L1560 (1995)CrossRefGoogle Scholar
  26. 26.
    D.J.O. Orzi, E.N. Morel, J.R. Torga, A.N. Roviglione, G.M. Bilmes, Characterization of reference standards for dirt by Laser Ablation Induced Photoacoustics (LAIP). J. Phys. Conf. Ser. 214, 012078 (2010)CrossRefGoogle Scholar
  27. 27.
    D.J. Orzi, F.C. Alvira, G.M. Bilmes, Determination of femtosecond ablation thresholds using laser ablation induced photoacoustics (LAIP). Applied Physics A, vol. I: Mechanisms, Models and Experiments. Guest-Editors: M. Garcia, I. Zergioti, L. Zhigilei, E. Haro-Poniatowski (2013)Google Scholar
  28. 28.
    A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, G. Mourou, Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett. 82(19), 3883–3886 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    D.S. Ivanov, L.V. Zhigilei, Effect of pressure relaxation on the mechanisms of short-pulse laser melting. Phys. Rev. Lett. 91, 105701 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    D.S. Ivanov, L.V. Zhigilei, Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films. Phys. Rev. B 68, 064114 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    A.K. Upadhyay, H.M. Urbassek, Melting and fragmentation of ultra-thin metal films due to ultrafast laser irradiation. A molecular dynamics study. J. Phys. D Appl. Phys. 38, 2933–2941 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    D.S. Ivanov, A.I. Kuznetsov, V.P. Lipp, B. Rethfeld, B.N. Chichkov, M.E. Garcia, W. Schulz, Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment. Appl. Phys. A 111, 675–687 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    D.S. Ivanov, V.P. Lipp, A. Blumenstein, F. Kleinwort, V.P. Veiko, E. Yakovlev, V. Roddatis, M.E. Garcia, B. Rethfeld, J. Ihlemann, P. Simon, Experimental and theoretical investigation of periodic nanostructuring of Au with ultrashort UV laser pulses near the damage threshold. Phys. Rev. Appl. 4, 064006 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    S.I. Anisimov, N.A. Inogamov, Y.V. Petrov, V.A. Khokhlov, V.V. Zhakhovskii, K. Nishihara, M.B. Agranat, S.I. Ashitkov, S. Komarov, Thresholds for front-side ablation and rear-side spallation of metal foil irradiated by femtosecond laser pulse. Appl. Phys. A 92, 797–801 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    C. Wu, L.V, Zhigilei, Microscopic mechanisms of laser spallation and ablation of metal targets from large-scale molecular dynamics simulations. Appl. Phys. A 114, 11–32 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centro de Investigaciones Ópticas (CONICET La Plata-CIC-UNLP) and Facultad de IngenieríaUniversidad Nacional de La PlataBuenos AiresArgentina
  2. 2.Departamento de FísicaEscuela Politécnica NacionalQuitoEcuador
  3. 3.Dept. Radioterapia, Hospital Oncológico Docente Dr. Julio Villacreses ColmontSOLCA, Núcleo Portoviejo, Av. del Valle Manabí Guillem (Paso Lateral)PortoviejoEcuador
  4. 4.Grupo Ecuatoriano para el Estudio Experimental y Teórico de Nanosistemas, GETNanoDiego de Robles y Vía Interoceánica, USFQ, N104-EQuitoEcuador
  5. 5.Institute of Physics and Center of Interdisciplinary Nanostructure Science and Technology (CINSaT)University of KasselKasselGermany

Personalised recommendations