Advertisement

Applied Physics A

, 124:338 | Cite as

Dielectric properties of (K0.5Na0.5)NbO3–(Bi0.5Li0.5)ZrO3 lead-free ceramics as high-temperature ceramic capacitors

  • Tianxiang Yan
  • Feifei Han
  • Shaokai Ren
  • Xing Ma
  • Liang Fang
  • Laijun Liu
  • Xiaojun Kuang
  • Brahim Elouadi
Article

Abstract

(1 − x)K0.5Na0.5NbO3x(Bi0.5Li0.5)ZrO3 (labeled as (1 − x)KNN–xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic–tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN–0.08BLZ ceramic exhibits a high and stable permittivity (~ 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos. 11264010, 11564010, 51402196), the Natural Science Foundation of Guangxi (GA139008, 2016GXNSFDA380027), and the China Postdoctoral Science Foundation (Grants 2014M552229 and 2015T80915).

References

  1. 1.
    H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, J. Rödel, J. Eur. Ceram. Soc. 35, 2501 (2015)CrossRefGoogle Scholar
  2. 2.
    H. Zhang., S. Jiang, J. Xiao, K. Kajiyoshi, J. Appl. Phys. 107, 124118 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    H. Zhang, S. Jiang, K. Kajiyoshi, J. Xiao, J. Am. Ceram. Soc. 93, 750 (2010)CrossRefGoogle Scholar
  4. 4.
    R.W. Johnson, J.L. Evans, P. Jacobsen, J.R. Thompson, M. Christopher, IEEE Trans. Electron. Packag. Manuf. 27, 164 (2004)CrossRefGoogle Scholar
  5. 5.
    Z. Chen, G. Li, X. Sun, L. Liu, L. Fang, Ceram. Int. 41, 11057 (2015)CrossRefGoogle Scholar
  6. 6.
    J.B. Casady, R.W. Johnson, Solid State Electron. 39, 1409 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    H. Cheng, H. Du, W. Zhou, D. Zhu, F. Luo, B. Xu, J. Am. Ceram. Soc. 96, 833 (2013)CrossRefGoogle Scholar
  8. 8.
    X. Chen, J. Chen, D. Ma, G. Huang, L. Fang, H. Zhou, Mater. Lett. 145, 247 (2015)CrossRefGoogle Scholar
  9. 9.
    H. Kishi, Y. Mizuno, H. Chazono, Jpn. J. Appl. Phys. 42, 1 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M.J. Pan, C.A. Randall, A. Brief, IEEE Electr. Insul. Mag. 26, 44 (2010)CrossRefGoogle Scholar
  11. 11.
    K. Kobayashi, M. Ryu, Y. Doshida, Y. Mizuno, C.A. Randall, X. Tan, J. Am. Ceram. Soc. 96, 531 (2013)CrossRefGoogle Scholar
  12. 12.
    Z. Zhang, Y. Wu, J. Miao, Z. Liu, Y. Li, Ceram. Int. 41, S9 (2015)CrossRefGoogle Scholar
  13. 13.
    Y. Saito, H. Takao, T. Tani, T. Nanoyama, K. Takatori, T. Homma et al., Nature 123, 84 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    C.C. Wang, J. Wang, X.H. Sun, L.N. Liu, J. Zhang, J. Zheng, C. Cheng, Solid State Commun. 179, 29 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    H.L. Du, W.C. Zhou, F. Luo, J. Appl. Phys. 105, 124104 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    H. Cheng, W. Zhou, H. Du, F. Luo, D. Zhu, D. Jiang, B. Xu, J. Alloy. Comp. 579, 192 (2013)CrossRefGoogle Scholar
  17. 17.
    X. Chen, D. Ma, G. Huang, J. Chen, H. Zhou, Ceram. Int. 41, 13883 (2015)CrossRefGoogle Scholar
  18. 18.
    L. Zhang, S. Wang, F. Liu, J. Electron. Mater. 44, 3408 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    V. Bobnar, J. Holc, M. Hrovat, M. Kosec, J. Appl. Phys. 101, 074103 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    T. Yan, F. Han, S. Ren, J. Deng, X. Ma, L. Ren, L. Fang, L. Liu, B. Peng, B. Elouadi, Mater. Res. Bull. 99, 403–408 (2018)CrossRefGoogle Scholar
  21. 21.
    R.P. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Phys. Status Solidi RRL 3, 142 (2009)CrossRefGoogle Scholar
  22. 22.
    Z. Wang, D. Xiao, J. Wu, M. Xiao, F. Li, J. Zhu, J. Am. Ceram. Soc. 97, 688 (2014)CrossRefGoogle Scholar
  23. 23.
    N. Klein, E. Hollenstein, D. Damjanovic, H. Trodahl, N. Setter, M. Kuball, J. Appl. Phys. 102, 014112 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    H.L. Du, D.J. Liu, F.S. Tang, J. Am. Ceram. Soc. 90, 2824 (2007)CrossRefGoogle Scholar
  25. 25.
    H.L. Du, W.C. Zhou, F. Luo, J. Appl. Phys. 104, 044104 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    A.W. Hewat, J. Phys. C. Solid State Phys. 6, 2559 (1973)ADSCrossRefGoogle Scholar
  27. 27.
    C. Long, T. Li, H. Fan, Y. Wu, L. Zhou, Y. Li, L. Xiao, Y. Li, J. Alloy. Comp. 658, 839 (2016)CrossRefGoogle Scholar
  28. 28.
    R.Z. Zuo, X.S. Fang, C. Ye, Appl. Phys. Lett. 90, 092904 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    L. Liu, M. Knapp, L.A. Schmitt, H. Ehrenberg, L. Fang, H. Fuess, M. Hoelzel, M. Hinterstein, EPL. 114, 47011 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    L. Liu, M. Knapp, H. Ehrenberg, L. Fang, L.A. Schmitt, H. Fuess, M. Hoelzel, M. Hinterstein, J. Appl. Crystallogr. 49, 574 (2016)CrossRefGoogle Scholar
  31. 31.
    L. Liu, M. Knapp, H. Ehrenberg, L. Fang, H. Fan, L.A. Schmitt, H. Fuess, M. Hoelzel, H. Dammak, M. Pham-Thi, M. Hinterstein, J. Euro. Ceram. Soc. 37, 1387 (2017)CrossRefGoogle Scholar
  32. 32.
    D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, J. Appl. Phys. 94, 3313 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    R.D. Shannon, Acta Crystallogr. 32, 751 (1976)CrossRefGoogle Scholar
  34. 34.
    W.F. Liang, W.J. Wu, D.Q. Xiao, J.G. Zhu, J.G. Wu, J. Mater. Sci. 46, 6871 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    W.F. Liang, W.J. Wu, D.Q. Xiao, J.M. Zhu, J.G. Zhu, J.G. Wu, Phys. Status Solidi RRL 5, 220 (2011)CrossRefGoogle Scholar
  36. 36.
    Y. Guo, K.I. Kakimoto, H. Ohsato, Solid State Commun. 129, 279 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    K. Uchino, S. Nomura, Ferroelectr. Lett. Sect. 44, 55 (1982)CrossRefGoogle Scholar
  38. 38.
    A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    L. Liu, X. Ma, M. Knapp, H. Ehrenberg, L. Fang, M. Hinterstein, EPL. 118, 47001 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    G. Xu, G. Shirane, J.R.D. Copley, P.M. Gehring, Phys. Rev. B 69, 064112 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    M. Yoshida, S. Mori, N. Yamamoto, Y. Uesu, J.M. Kiat, Ferroelectrics 217, 327 (1998)CrossRefGoogle Scholar
  42. 42.
    L. Liu, Y. Huang, C. Su, L. Fang, M. Wu, C. Hu, H. Fan, Appl. Phys. A 104, 1047 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    J. Zang, M. Li, D. Sinclair, W.J.J. Rödel, J. Am. Ceram. Soc. 97, 1523 (2014)CrossRefGoogle Scholar
  44. 44.
    T. Yan, X. Sun, J. Deng, S. Liu, F. Han, X. Liu, L. Fang, D. Lin, B. Peng, L. Liu, Solid State Commun. 264, (2017)Google Scholar
  45. 45.
    A. Molak, E. Ksepko, I. Gruszka, A. Ratuszna, M. Paluch, Z. Ujma, Solid State Ion. 176, 1439 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangxi Universities Key Laboratory of Non-ferrous Metal Oxide Electronic Functional Materials and Devices, College of Materials Science and Engineering, College of Mechanical and Control EngineeringGuilin University of TechnologyGuilinChina
  2. 2.Laboratory of Chemical Analysis Elaboration and Materials, Engineering (LEACIM)Université de La RochelleLa Rochelle Cedex 01France
  3. 3.Guangxi Scientific Experiment Center of Mining, Metallurgy and EnvironmentGuilin University of TechnologyGuilinChina

Personalised recommendations