Advertisement

Applied Physics A

, 124:348 | Cite as

Design of miniaturized, low-loss and flexible multi-band metamaterial for microwave application

  • Tarakeswar Shaw
  • Debasis Mitra
Article

Abstract

In this paper, a novel miniaturized low-loss metamaterial unit cell structure, called circular spiral split ring resonator (CSSRR), operating at microwave frequency regime is introduced. The miniaturization is realized with inductive loading by increasing the length of metallic spiral strips inside the structure. Due to inductive loading, the effective inductance-to-capacitance ratio, L/C, is increased as a consequence, low-loss behaviour is also obtained along with the compactness. Despite of miniaturization and low loss, the introduced structure exhibits multi-resonance property with two distinct ε-negative (ENG) regions and one µ-negative (MNG) region over the X, Ku, and K microwave frequency bands. Particularly, the low-loss behaviour is observed for all three resonance frequencies of the proposed structure. Furthermore, the presented metamaterial is flexible and provides stable characteristics to bending as well as twisting effect.

Notes

Acknowledgements

For research support, T. Shaw acknowledges the Visvesvaraya PhD scheme for Electronics & IT research fellowship award and D. Mitra acknowledges the Visvesvaraya Young Faculty research fellowship award, under MeitY, Govt. of India.

References

  1. 1.
    I.B. Vendik, O.G. Vendik, Tech. Phys. 58, 1 (2013)CrossRefGoogle Scholar
  2. 2.
    D. Schurig, J.J. Mock, D.R. Smith, Appl. Phy. Lett. 88, 041109 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    F. Bilotti, A. Toscano, L. Vegni, IEEE Trans. Antennas Propag. 55, 2258 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    W. Withayachumnankul, C. Fumeaux, D. Abbott, Opt. Express 18, 25912 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    A. Dhouibi, S.N. Burokur, A.D. Lustrac, A. Priou, Microwave Opt. Tech. Lett. 54, 2287 (2012)CrossRefGoogle Scholar
  6. 6.
    H.-X. Xu, G.-M. Wang, Q. Liu, J.F. Wang, J.Q. Gong, Appl. Phys. A 107, 261 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A. Sarkhel, D. Mitra, S. Paul, S.R.B. Chaudhuri, Microwave Opt. Tech. Lett. 57, 1152 (2015)CrossRefGoogle Scholar
  8. 8.
    M.R.I. Faruque, M.J. Hossain, S.S. Islam, M.F.B. Jamlos, M.T. Islam, Appl. Phys. A 123, 310 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    B.-I. Popa, S.A. Cummer, Phys. Rev. E 73, 016617 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    D. Huang, Y. Urzhumov, D.R. Smith, K.H. Teo, J. Zhang, J. Appl. Phys. 111, 064902 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    J. Zhou, T. Koschny, C.M. Soukoulis, Opt. Express 16, 11147 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    D. Güney, T. Koschny, C.M. Soukoulis, Phys. Rev. B 80, 125129 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    X. Zhou, Y. Liu, X. Zhao, Appl. Phys. A 98, 643 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    B.-I. Popa, S.A. Cummer, Phys. Rev. Lett. 100, 207401 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    L. Zhu, F.-Y. Meng, L. Dong, J.-H. Fu, Q. Wu, IEEE Trans. Terahertz Scien. Tech. 3, 805 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    L. Zhu, F. Meng, F. Zhang, J. Fu, Q. Wu, X. Ding, J.L.-W. Li, Progress Electromag. Res. 137, 239 (2013)CrossRefGoogle Scholar
  18. 18.
    C. Zhu, J.-J. Ma, L. Li, C.-H. Liang, Electron. Lett. 47, 12 (2011)CrossRefGoogle Scholar
  19. 19.
    C. Sabah, IEEE J. Selec. Top. Quantum Electron. 19, 8500808 (2013)CrossRefGoogle Scholar
  20. 20.
    P.M. Ragi, K.S. Umadevi, P. Nees, J. Jose, M.V. Keerthy, V.P. Joseph, Microwave Opt. Tech. Lett. 54, 1415 (2012)CrossRefGoogle Scholar
  21. 21.
    Z.H. Jiang, D.E. Brocker, P.E. Sieber, D.H. Werner, IEEE Trans. Antennas Propag. 62, 4021 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    S.I. Kwak, D.-U. Sim, J.H. Kwon, Y.J. Yoon, IEEE Trans. Electromag. Compat. 59, 297 (2017)CrossRefGoogle Scholar
  23. 23.
    L. Li, H. Liu, H. Zhang, W. Xue, IEEE Trans. Ind. Electron. 65, 3230 (2018)CrossRefGoogle Scholar
  24. 24.
    J. Zhou, T. Koschny, M. Kafesaki, C.M. Soukoulis, Photon. Nanostruct. Fundam. Appl. 6, 96 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    HFSS ver. 15 (Ansoft Corporation, Pittsburgh, PA, USA)Google Scholar
  26. 26.
    D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Phys. Rev. E 71, 036617 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    E. Ekmekci, G.T. Sayan, Electron. Lett. 46, 324 (2010)CrossRefGoogle Scholar
  28. 28.
    O. Yurduseven, A.E. Yilmaz, G.T. Sayan, IEEE Antennas Wirel. Propag. Lett. 10, 701 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, IEEE Trans. Instrum. Meas. 39, 387 (1990)CrossRefGoogle Scholar
  30. 30.
    R.W. Ziolkowski, IEEE Trans. Antennas Propag. 51, 1516 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    A.K. Iyer, G.V. Eleftheriades, IEEE Trans. Antennas Propag. 55, 2746 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    U.C. Hasar, J.J. Barroso, J. Infrared Milli Terahertz Waves 33, 218 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunication EngineeringIndian Institute of Engineering Science and TechnologyHowrahIndia

Personalised recommendations