Advertisement

Applied Physics A

, 124:332 | Cite as

A 3D heterogeneous FeTiO3/TiO2@C fiber membrane as a self-standing anode for power Li-ion battery

  • Jing-quan Li
  • Mao-xiang Jing
  • Chong Han
  • Shan-shan Yao
  • Hong-ai Zhai
  • Li-li Chen
  • Xiang-qian Shen
  • Ke-song Xiao
Article

Abstract

A three-dimensional (3D) networking FeTiO3/TiO2@C flexible fiber membrane was successfully fabricated by an electrospinning process and a controlled hot-press sintering method. This FeTiO3/TiO2@C fiber membrane displays a long-range continuous conductive networks, which can be directly used as self-standing anodes. The electrode sintered at 750 °C for 3 h possesses a reversible capacity of 205.4 mAh/g after 100 cycles at a current density of 300 mA/g. The superior cycle and rate performance can be attributed to the synergistic effect of little volume variation of TiO2 matrix, high capacity of FeTiO3 and good electrical conductivity of 3D networking.

Notes

Acknowledgements

The work was financially supported by National Natural Science Foundation of China (Grant no. 51474113, 51504101), the Natural Science Foundation of Jiangsu Province (Grant no. BK20150514), the Natural Science Research Program of Jiangsu Province Higher Education of China (Grant no. 14KJB430010). And we also thank the sponsorship of Jiangsu Overseas Research & Training Program for University Young & Middle-aged Teachers and Presidents.

References

  1. 1.
    J.B. Goodenough, K.S. Park. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Kotobuki, The current situation and problems of rechargeable lithium ion batteries. Open Electrochem. J. 4, 28–35 (2012)CrossRefGoogle Scholar
  3. 3.
    M.Z. Ge, C.Y. Cao, J.Y. Huang, S.H. Li, Z. Chen, K.Q. Zhang, S.S. Al-Dey, Y.K. Lai, A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications. J. Mater. Chem. A 4, 6772–6801 (2016)CrossRefGoogle Scholar
  4. 4.
    Y. Liu, Y. Yang, Recent progress of TiO2-based anodes for Li ion batteries. J. Nanomater. 2016, 8123652 (2016).  https://doi.org/10.1155/2016/8123652 Google Scholar
  5. 5.
    D. Z.Yang.S. Choi, K. Kerisit, J.M. Rosso, D. Wang, J. Zhang, G. Graff, J. Liu, Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: a review. J. Power Sources 192(2), 588–598 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    X. Jiang, X. Yang, Y. Zhu, K. Fan, P. Zhao, C. Li, Designed synthesis of graphene–TiO2–SnO2 Ternary nanocomposites as lithium-ion anode materials. New J. Chem. 37, 3671–3678 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Wang, U. Ma, X. Huang, Y. Huang, X. Zhang, General and controllable synthesis strategy of metal oxide/Ti02 hierarchical heterostructures with improved lithium-ion battery performance. Sci. Rep. 70, 1–708 (2012)Google Scholar
  8. 8.
    J.S. Chen, H. Liu, S.Z. Qiao, X.W. Lou, Carbon-supported ultra-thin anatase TiO2 nanosheets for fast reversible lithium storage. J. Mater. Chem. 21, 5687–5692 (2011)CrossRefGoogle Scholar
  9. 9.
    H. Qiao, Q.H. Luo, Q.F. Wei, Y.B. Cai, F.L. Huang, Electrochemical properties of rutile TiO2 nanorods as anode material for lithium-ion batteries. Ionics 18, 667–672 (2012)CrossRefGoogle Scholar
  10. 10.
    K. Lee, A. Mazare, P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes. Chem. Rev. 114(19), 9385–9454 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Liu, W. Li, D.K. Shen, D.Y. Zhao, G.X. Wang, Graphitic carbon conformal coating of mesoporous TiO2 hollow spheres for high-performance lithium ion battery anodes. J. Am. Chem. Soc. 137(40), 13161–13166 (2015)CrossRefGoogle Scholar
  12. 12.
    Y.M. Ren, J. Zhang, Y.Y. Liu, H.B. Li, H.J. Wei, B.J. Li, X.Y. Wang, Synthesis and superior anode performances of TiO2–carbon–rGO composites in lithium-ion batteries. ACS Appl. Mater. Interfaces 4, 4776–4780 (2012)CrossRefGoogle Scholar
  13. 13.
    J.I. Kim, J.W. Lee, Nanocomposite of TiO2 and mesoporous carbon for high power anode of lithium rechargeable batteries. J. Nanosci. Nanotechnol. 5(11), 9145–9150 (2015)CrossRefGoogle Scholar
  14. 14.
    J. Luo, X. Xia, Y. Luo, C. Guars, J. Liu, X. Qi, C.F. Ng, T. Yu, H. Zhang, H.J. Fan, Rationally designed hierarchical TiO2C@Fe203 hollow nanostructures for improved lithium ion storage. Adv. Enerev. Mater. 3, 737–743 (2013)CrossRefGoogle Scholar
  15. 15.
    W. Xue, X. Shi, H. Xia, Ultrafine Fe2O3 nanoflakes grafted on TiO2 nanosheet arrays as advanced anodes for lithium-ion batteries. Sci. Adv. Mater. 8(6), 1293–1297 (2016)CrossRefGoogle Scholar
  16. 16.
    Q. Xiong, C. Zheng, H. Chi, J. Zhang, Z.G. Ji, Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes. Nanotechnology 28(5), 055405 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    S.S. Xiao, F. Bi, L. Zhao, L.Y. Wang, G.Q. Gai, Design and synthesis of H-TiO2/MnO2 core–shell nanotube arrays with high capacitance and cycling stability for supercapacitors. J. Mater. Sci. 52(13), 7744–7753 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    Y.S. Luo, J.S. Luo, W.W. Zhou, X.Y. Xiao, H.Zhang,D.Y.W. Yu, C.M. Li, H.J. Fan, T. Yu, Controlled synthesis of hierarchical graphene-wrapped TiO2@ Co3O4 coaxial nanobelt arrays for high-performance lithium storage. J. Mater. Chem. A 1(2), 273–281 (2013)CrossRefGoogle Scholar
  19. 19.
    N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 11, 512–517 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Wang, J.Y. Lee, H.C. Zeng, Polycrystalline SnO2 nanotubes prepared via infiltration casting of nanocrystallites and their electrochemical application. Chem. Mater. 17(15), 3899–3903 (2005)CrossRefGoogle Scholar
  21. 21.
    X.M. Wei, H.C. Zeng, Sulfidation of single molecular sheets of MoO3 pillared by bipyridine in nanohybrid MoO3 (4, 4′-bipyridyl)0.5. Chem. Mater. 15(2), 433–442 (2003)CrossRefGoogle Scholar
  22. 22.
    J. Fan, T. Wang, C. Yu, B. Tu, Z. Jiang, D. Zhao, Ordered nanostructured Tin-based oxides/carbon composite as the negative-electrode material for lithium-ion batteries. Adv. Mater. 16(16), 1432–1436 (2004)CrossRefGoogle Scholar
  23. 23.
    T. Tao, A.M. Glushenkov, M.M. Rahman, Y. Chen, Electrochemical reactivity of ilmenite FeTi03, its nanostructures and oxide-carbon nanocomposites with lithium. Electrochim. Acta 108, 127–134 (2013)CrossRefGoogle Scholar
  24. 24.
    X. Guam, J. Zheng, M. Zhao, L. Li, G. Li, Synthesis of FeTi03 nanosheets with {0001} facets exposed: enhanced electrochemical performance and catalytic activity. RSC Adv. 3, 13635–13641 (2013)CrossRefGoogle Scholar
  25. 25.
    S.M. Guo, J.R. Liu, S. Qiu, Y.R. Wang, X.R. Yanc, N.N. Wu, S.Y. Wang, Z.H. Guo, Enhancing Electrochemical performances of TiO2 porous microspheres through hybridizing with FeTiO3 and nanocarbon. Electrochim. Acta 190, 556–565 (2016)CrossRefGoogle Scholar
  26. 26.
    B. Zhao, S. Jiang, C. Su, R. Cai, R. Ran, M.O. Tade, Z.P. Shao, A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage. J. Mater. Chem. A 1(39), 12310–12320 (2013)CrossRefGoogle Scholar
  27. 27.
    Y.G. Huang, X.H. Zhang, X.B. Chen, H.Q. Wang, J.R. Chen, X.X. Zhong, Q.Y. Li, Electrochemical properties of MnO2-deposited TiO2 nanotube arrays 3D composite electrode for supercapacitors. Int J Hydrogen Energy 40, 14331–14337 (2015)CrossRefGoogle Scholar
  28. 28.
    M.S. Balogun, Y. Zhu, W.T. Qiu, Y. Luo, Y.C. Huang, C.L. Liang, X.H. Lu, Y.X. Tong, Chemically lithiated TiO2 heterostructured nanosheet anode with excellent rate capability and long cycle life for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 7(46), 25991–26003 (2015)CrossRefGoogle Scholar
  29. 29.
    M.X. Jing, J.Q. Li, Z.C. Pi, H.A. Zhai, L.L. Chen, S.S. Yao, J. Xiang, X.Q. Shen, X.M. Xi, K.S. Xiao, Electrospinning fabrication and enhanced performance of 3D Li3V2(PO4)3/C fiber membrane as self-standing cathodes for Li-ion battery. Electrochim. Acta 212, 898–904 (2016)CrossRefGoogle Scholar
  30. 30.
    M.X. Jing, Z.C. Pi, H.A. Zhai, J.Q. Li, L.L. Chen, X.Q. Shen, X.M. Xi, K.S. Xiao, Three-dimensional Li3V2(PO4)3/C nanowire and nanofiber hybrid membrane as a self-standing, binder-free cathode for lithium ion batteries. RSC Adv. 6, 71574–71580 (2016)CrossRefGoogle Scholar
  31. 31.
    S. Myung, N. Takahashi, S. Komaba, C.S. Yoon, Y. Sun, K. Amine, H. Yashiro, Nanostructured TiO2 and its application in lithium-ion storage. Adv. Funct. Mater. 21, 3231–3241 (2011)CrossRefGoogle Scholar
  32. 32.
    M. Chen, W. Li, X. Shen, G.W. Diao, Fabrication of core–shell α-Fe2O3@ Li4Ti5O12 composite and its application in the lithium ion batteries. ACS Appl. Mater. Interfaces 6, 4514–4523 (2014)CrossRefGoogle Scholar
  33. 33.
    L. Gao, H. Hu, G.J. Li, Q.C. Zhu, Y. Yu, Hierarchical 3D TiO2@Fe2O3 nanoframework arrays as high-performance anode materials. Nanoscale 6, 6463–6467 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    T. Song, H. Han, H. Choi, J.W. Lee, H. Park, S. Lee, W. Park, S. Kim, L. Liu, U. Paik, TiO2 nanotube branched tree on a carbon nanofiber nanostructure as an anode for high energy and power lithium ion batteries. Nano Res. 7(4), 491–501 (2014)CrossRefGoogle Scholar
  35. 35.
    W. Yue, S. Tao, J. Fu, Z. Gao, Y. Ren, Carbon-coated graphene–Cr2O3 composites with enhanced electrochemical performances for Li-ion batteries. Carbon 65, 97–104 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jing-quan Li
    • 1
  • Mao-xiang Jing
    • 1
  • Chong Han
    • 1
  • Shan-shan Yao
    • 1
  • Hong-ai Zhai
    • 1
  • Li-li Chen
    • 1
  • Xiang-qian Shen
    • 1
    • 2
  • Ke-song Xiao
    • 2
  1. 1.Institute for Advanced MaterialsJiangsu UniversityZhenjiangChina
  2. 2.Changsha Research Institute of Mining and Metallurgy, Co., Ltd.ChangshaChina

Personalised recommendations