Applied Physics A

, 124:319 | Cite as

Temperature-dependent physicochemical properties of magnesium ferrites (MgFe2O4)

  • B. Jansi Rani
  • M. Durga
  • G. Ravi
  • P. Krishnaveni
  • V. Ganesh
  • S. Ravichandran
  • R. Yuvakkumar
Rapid Communication
  • 43 Downloads

Abstract

Physical and electrochemical properties of magnesium ferrite (MgFe2O4) with respect to calcination temperature were investigated. XRD results revealed the increasing degree of crystallinity at different annealing temperatures. SEM images explored the spherical morphology of particles. High intense principal photoluminescence peak situated at 532 nm revealed spinel ferrite system assigned to 3d5 → 3d4 4s transitions of Fe3+ ions. Infrared metal–oxygen vibration observed at 580 and 441 cm−1 revealed tetrahedral and octahedral sites of ferrite system. The product showed highest specific capacitance of 119.50 F/g at scan rate 5 mV/s for the sample annealed at 500 °C and the specific capacitance noticeably decreased for increasing calcination temperature. The calcination temperature played a central role on structural, morphological, optical, and electrochemical properties of MgFe2O4.

Notes

Acknowledgements

This work was supported by UGC Start-Up Research Grant no. F.30-326/2016 (BSR).

References

  1. 1.
    K. Mohit, V.R. Gupta, N. Gupta, S.K. Rout, Structural and microwave characterization of Ni0.2CoxZn0.8–xFe2O4 for antenna applications. Ceram. Int. 40, 1575–1586 (2014)CrossRefGoogle Scholar
  2. 2.
    A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, I.S. Kazakevich, A.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, V.A. Turchenko, M.M. Salem, A.M. Balagurov, Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range. J. Magn. Magn. Mater. 426, 487–496 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    K. Praveena, K. Sadhana, S.R. Murthy, Elastic behaviour of microwave hydrothermally synthesized nanocrystalline Mn1−xZnx ferrites. Mater Res Bull 47, 1096–1103 (2012)CrossRefGoogle Scholar
  4. 4.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.A. Turchenko, I.S. Kazakevich, A.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, A.M. Balagurov, Thermal evolution of exchange interactions in lightly doped barium hexaferrites. J. Magn. Magn. Mater. 426, 554–562 (2017)ADSCrossRefGoogle Scholar
  5. 5.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, V.V. Oleynik, O.S. Yakovenko, L.Y. Matzui, D.A. Vinnik, Magnetic, dielectric and microwave properties of the BaFe12−xGaxO19 (x ≤ 1.2) solid solutions at room temperature. J. Magn. Magn. Mater. 442, 300–310 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskiy, Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12−xAlxO19 (x ≤ 1.2) at room temperature. JETP Lett. 103, 100–105 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, D.N. Chitanov, I.S. Kazakevich, A.V. Trukhanov, V.A. Turchenko, M. Salem, Strong corelation between magnetic and electrical subsystems in diamagnetically substituted hexaferrites ceramics. Ceram. Int. 43, 5635–5641 (2017)CrossRefGoogle Scholar
  8. 8.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Polarization origin and iron positions in indium doped barium hexaferrites. Ceram. Int. 44, 290–300 (2018)CrossRefGoogle Scholar
  9. 9.
    N. Ma, Y. Yue, W. Hua, Z. Gao, Selective oxidation of styrene over nanosized spinel-type MgxFe3–xO4 complex oxide catalysts. Appl. Catal. A 251, 39–47 (2003)CrossRefGoogle Scholar
  10. 10.
    L. Wang, H. Zhou, Y. Hong, G.M. Kale, Influence of flux treatment on the glass forming ability of Pd–Si binary alloys. J. Univ. Sci. Technol. Beijing 14, 4 (2007)CrossRefGoogle Scholar
  11. 11.
    R. Koferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, Preparation and characterization of nanosized magnesium ferrite powders by a starch-gel process and corresponding ceramics. J. Mater. Sci. 48, 6509–6518 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    D. Lianfeng, G. Fenghui, W. Limin, J. Songzhe, W. Hua, Hydrothermal synthesis and characterization of MnCo2O4 in the low-temperature hydrothermal process: their magnetism and electrochemical properties. J. Adv. Ceram. 2(3), 266–273 (2013)CrossRefGoogle Scholar
  13. 13.
    K. Manju, T. Smitha, D.S. Nair, E.K. Aswathy, B. Aswathy, T. Arathy, K.K.T. Binu, Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods. J. Adv. Ceram. 4(3), 199–205 (2015)CrossRefGoogle Scholar
  14. 14.
    H. Rafidah, H. Jumiah, H. Mansor, P. Suriati, A. Rabaah Syahidah, Morphology and dielectric properties of single sample Ni0.5Zn0.5Fe2O4 nanoparticles prepared via mechanical alloying. J. Adv. Ceram. 3(4), 306–316 (2014)CrossRefGoogle Scholar
  15. 15.
    P.N. Medeiros, Y.F. Gomes, M.R.D. Bomio, I.M.G. Santos, M.R.S. Silva, C.A. Paskocimas, M.S. Li, F.V. Motta, Influence of variables on the synthesis of CoFe2O4 pigment by the complex polymerization method. J. Adv. Ceram. 4(2), 135–141 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Hiromichi, Y. Yuhi, N. Takashi, I. Yoshiteru, M. Tsunehiro, H. Hideyuki, Heat generation properties in AC magnetic field for composite powder material of the Y3Fe5O12–nSiC system prepared by reverse coprecipitation method. J. Adv. Ceram. 5(3), 262–268 (2016)CrossRefGoogle Scholar
  17. 17.
    A. Yogesh, C.M. Chaudhari, P.P. Jagtap, S.T. Bendre, Structural, magnetic and dielectric properties of nano-crystalline Ni-doped BiFeO3 ceramics formulated by self-propagating high-temperature synthesis. J. Adv. Ceram. 2(2), 135–140 (2013)CrossRefGoogle Scholar
  18. 18.
    S. Yulia, S. Sergii, Y. Oleksandr, T. Volodymyr, B. Anatolii, xSrxMnO3 nanoparticles by precipitation-synthesis of ferromagnetic La from diethylene glycol solution and their properties. J. Adv. Ceram. 5(3), 197–203 (2016)CrossRefGoogle Scholar
  19. 19.
    W. Hui, P. Wei, L. Dandan, L. Heping, Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J. Adv. Ceram. 1(1), 2–23 (2012)CrossRefGoogle Scholar
  20. 20.
    H. Xianpei, L. Xinyu, L. Fei, Y. Changlai, Q. Jingjing, X. Jiwen, Z. Changrong, C. Guohua, Microstructures and microwave dielectric properties of(Ba1−xSrx)4(Sm0.4Nd0.6)28/3Ti18O54 solid solutions. J. Adv. Ceram. 6(1), 50–58 (2017)CrossRefGoogle Scholar
  21. 21.
    B. Al-Najar, L. Khezami, J.J. Vijaya, O.M. Lemine, M. Bououdina, Effect of synthesis route on the uptake of Ni and Cd by MgFe2O4 nanopowders. Appl. Phys. A 123, 100 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    F. Basiri, M. Taei, Application of spinel-structured MgFe2O4 nanoparticles for simultaneous electrochemical determination diclofenac and morphine. Microchim. Acta 184, 155–162 (2017)CrossRefGoogle Scholar
  23. 23.
    E.E. Ateia, E. Takla, A.T. Mohamed, Physical and magnetic properties of (Ba/Sr) substituted magnesium nano ferrites. Appl. Phys. A 123, 631 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    Y.M. Kang, S.H. Lee, T.C. Kim, J. Jeong, D. Yang, K.S. Han, D.H. Kim, Magnetic property tuning of epitaxial spinel ferrite thin films by strain and composition modulation. Appl. Phys. A 123, 648 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    N. Aliyan, S.M. Mirkazemi, S.M. Masoudpanah, S. Akbari, The effect of post-calcination on cation distributions and magnetic properties of the coprecipitated MgFe2O4 nanoparticles. Appl. Phys. A 123, 446 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    K. Liang, X.J. Qiao, Z.G. Sun, X.D. Guo, L. Wei, Y. Qu, Preparation and microwave absorbing properties of graphene oxides/ferrite composites. Appl. Phys. A 123, 445 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    A.I. Ayesh, M.A. Haija, A. Shaheen, F. Banat, Spinel ferrite nanoparticles for H2S gas sensor. Appl. Phys. A 123, 682 (2017)CrossRefGoogle Scholar
  28. 28.
    J. Sharma, A. Kumar, S. Kumar, A.K. Srivastava, Investigation of structural and magnetic properties of Tb–Ni-doped bismuth ferrite nanoparticles by auto-combustion method. Appl. Phys. A 123, 522 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    P. Naderi, A.M. Masoudpanah, S. Alamolhoda, Magnetic properties of Li0.5Fe2.5O4 nanoparticles synthesized by solution combustion method. Appl. Phys. A 123, 702 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    Y. Yang, F. Wang, J. Shao, K.M. Batoo, D. Huang, Microstructure and magnetic properties of Zr–Mn substituted M-type SrLa hexaferrites. Appl. Phys. A 123, 568 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    V.A. Ketsko, E.N. Beresnev, M.A. Kopeva, L.V. Elesina, A.I. Baranchikov, A.I. Stognii, A.V. Trukhanov, N.T. Kuznetsov, Specifics of pyrohydrolytic and solid-phase syntheses of solid solutions in the (MgGa2O4)x(MgFe2O4)1–x system. Russ. J. Inorg. Chem. 55, 427–429 (2010)CrossRefGoogle Scholar
  32. 32.
    A.V. Trukhanov, A.I. Stognij, S.V. Trukhanov, A.A. Geraskin, V.A. Ketsko, Crystal structure and magnetic properties of nanosized Mg(Fe0.8Ga0.2)2O4-δ films on Si substrates. Crystallogr. Rep. 58, 498–504 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    S.V. Trukhanov, Magnetic and magnetotransport properties of La1−xBaxMnO3−x/2 perovskite manganites. J. Mater. Chem. 13, 347–352 (2003)CrossRefGoogle Scholar
  34. 34.
    S.V. Trukhanov, Peculiarities of the magnetic state in the system La0.70Sr0.30MnO3−g (0 ≤ g ≤ 0.25). JETP 100, 95–105 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Sol–gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study. J. Magn. Magn. Mater. 320, 2774–2779 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    N. Pailhe, A. Wattiaux, M. Gaudon, A. Demourgues, Correlation between structural features and vis-NIR spectra of α-Fe2O3 hematite and AFe2O4 spinel oxides (A = Mg, Zn). J Solid State Chem 181, 1040–1047 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    S.V. Trukhanov, Investigation of stability of ordered manganites. JETP 101, 513–520 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, R. Szymczak, M. Baran, Thermal stability of A-site ordered PrBaMn2O6 manganites. J. Phys. Chem. Solids 67, 675–681 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    S.J. Potashnik, K.C. Ku, S.H. Chun, J.J. Berry, N. Samarth, P. Schiffer, Effects of annealing time on defect-controlled ferromagnetism in Ga1−xMnxAs. Appl. Phys. Lett. 79, 1495 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    S.V. Trukhanov, A.V. Trukhanov, C.E. Botez, A.H. Adair, H. Szymczak, R. Szymczak, Phase separation and size effects in Pr0.70Ba0.30MnO3+δ perovskite manganites. J. Phys. Condens. Matter 19, 266214–266218 (2007)ADSCrossRefGoogle Scholar
  41. 41.
    S.V. Trukhanov, A.V. Trukhanov, S.G. Stepin, H. Szymczak, C.E. Botez, Effect of the size factor on the magnetic properties of manganite La0.50Ba0.50MnO3. Phys. Solid State 50, 886–893 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    L. He, G. Zhang, Y. Dong, Z. Zhang, S. Xue, X. Jiang, Polyetheramide templated synthesis of monodisperse Mn3O4 nanoparticles with controlled size and study of the electrochemical properties. Nano-Micro Lett 6(1), 38–45 (2014)CrossRefGoogle Scholar
  43. 43.
    S. Shivakumar, T.R. Penki, N. Munichandraiah, Preparation and electrochemical performance of porous hematite (α-Fe2O3) nanostructures as supercapacitor electrode material. J. Solid State Electrochem. 18, 1057–1066 (2014)CrossRefGoogle Scholar
  44. 44.
    S.W. Oh, H.J. Bang, Y.C. Bae, Y.K. Sun, Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J Power Sources 173, 502–509 (2007)CrossRefGoogle Scholar
  45. 45.
    S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    A. Manikandan, M. Durka, K. Seevakan, S. Arul Antony, A novel one-pot combustion synthesis and opto-magnetic properties of magnetically separable spinel MnxMg1–xFe2O4 (0.0 ≤ x ≤ 0.5) nanophotocatalysts. J. Supercond. Nov. Magn. 28, 1405–1416 (2015)CrossRefGoogle Scholar
  47. 47.
    S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, H.C. Kuo, S.C. Wang, W.F. Hsieh, Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films. J. Cryst. Growth 287, 78–84 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    Y. Shen, Y. Wu, X. Li, Q. Zhao, Y. Hou, One-pot synthesis of MgFe2O4 nanospheres by solvothermal method. Mater Lett 96, 85–88 (2013)CrossRefGoogle Scholar
  49. 49.
    S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, Effects of post-thermal annealing on the optical constants of ZnO thin film. J. Alloys Compd. 448, 21–26 (2008)CrossRefGoogle Scholar
  50. 50.
    A.B. Djurisic, Y.H. Leung, K.H. Tam, Y.F.H. Su, L. Ding, W.K. Ge, Y.C. Zhong, K.S. Wong, W.K. Chan, H.L. Tam, K.W. Cheah, W.M.K. Wok, D.L. Phillips, Defect emissions in ZnO nanostructures. Nanotechnology 18, 095702 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    S. Maensiri, M. Sangmanee, A. Wiengmoon, Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res. Lett. 4, 221–228 (2009)ADSCrossRefGoogle Scholar
  52. 52.
    M. Jayalakshmi, K. Balasubramanian, Simple capacitors to supercapacitors—an overview. Int. J. Electrochem. Sci. 4, 878–886 (2009)Google Scholar
  53. 53.
    T.P. Gujar, V.R. Shinde, C.D. Lokhande, S.H. Han, Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors. J Power Sources 161, 1479 (2006)CrossRefGoogle Scholar
  54. 54.
    D. Narsimulu, B. Nageswara Rao, M. Venkateswarlu, E.S. Srinadhu, N. Satyanarayana, Electricaland electrochemical studies of nanocrystalline mesoporous MgFe2O4 as anode material for lithium battery applications. Ceram. Int. 42, 16789–16797 (2016)CrossRefGoogle Scholar
  55. 55.
    R. Kumar, H. Munstedt, Polyamide/silver antimicrobials: effect of crystallinity on the silver ion release. Polym. Int. 54, 1180–1186 (2005)CrossRefGoogle Scholar
  56. 56.
    R. Yuvakkumar, S.I. Hong, Nd2O3: novel synthesis and characterization. J. Sol-Gel. Sci. Technol. 73(2), 511–517 (2015)CrossRefGoogle Scholar
  57. 57.
    D.S. Priya, R. Suriyaprabha, R. Yuvakkumar, V. Rajendran, Chitosan-incorporated different nanocomposite HPMC films for food preservation. J. Nanopart. Res. 16(2), 2248 (2014)CrossRefGoogle Scholar
  58. 58.
    S. Sankarrajan, S. Aravindan, R. Yuvakkumar, K. Sakthipandi, V. Rajendran, Anomalies of ultrasonic velocities, attenuation and elastic moduli in Nd1−xSrxMnO3 perovskite manganite materials. J. Magn. Magn. Mater. 321(21), 3611–3620 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • B. Jansi Rani
    • 1
  • M. Durga
    • 1
  • G. Ravi
    • 1
  • P. Krishnaveni
    • 2
  • V. Ganesh
    • 2
  • S. Ravichandran
    • 3
  • R. Yuvakkumar
    • 1
  1. 1.Nanomaterials Laboratory, Department of PhysicsAlagappa UniversityKaraikudiIndia
  2. 2.Electrodics and Electrocatalysis (EEC) DivisionCSIR-Central Electrochemical Research Institute (CSIR-CECRI)KaraikudiIndia
  3. 3.Electro Inorganic DivisionCSIR-Central Electrochemical Research Institute (CSIR-CECRI)KaraikudiIndia

Personalised recommendations