Advertisement

Applied Physics A

, 124:365 | Cite as

Simple synthesis of graphene nanocomposites MgO–rGO and Fe2O3–rGO for multifunctional applications

  • Seham K. Abdel-Aal
  • Andrey Ionov
  • R. N. Mozhchil
  • Alim H. Naqvi
Article
  • 124 Downloads

Abstract

Hummer’s method was used to prepare graphene oxide (GO) by chemical exfoliation of graphite. Simple precipitation method was used for the preparation of hybrid nanocomposites MgO–rGO and Fe2O3–rGO. A 0.3 Molar of corresponding metal nitrate solution and GO solution are used for the preparation process. XRD, FT-IR, and XPS were used to characterize the prepared nanocomposites. The reduction of GO into reduced rGO in the formed nanocomposites was confirmed. Morphological characterization showed the formation of needle-shaped nanocrystals of MgO successfully grown on graphene nanosheet with average crystallite size 8.4 nm. Hematite nanocomposite Fe2O3–rGO forms rod-shaped crystals with average crystallite size 27.5 nm. The saturation magnetization observed for Fe2O3–rGO is less than reported value for the pure Fe2O3 nanoparticles. Thermal properties of as-prepared hybrid nanocomposites MgO–rGO and Fe2O3–rGO showed thermal stability of the prepared nanocomposite over long range of temperature.

Graphical Abstract

Notes

Acknowledgements

The authors are grateful to the center of Science and Technology, NAM, Center of Science and technology for non-aligned and other developing countries, New Delhi, India, for the fellowship (RTF-DCS-2016) research training fellowship for developing countries scientists provided for the first author S. K. A. This work is supported by NAM center New Delhi, and Interdisciplinary Nanotechnology Centre, Aligarh Muslim University (AMU), Aligarh 202002, India. The authors thank Dr. Imran, AMU for revising the English language of the manuscript.

References

  1. 1.
    C.-G. Karina, L.-C. Monica, C.-P. Nieves, G.-R. Pedro, Nanocomposites hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv. Funct. Mater. 15, 1125–1133 (2005)CrossRefGoogle Scholar
  2. 2.
    P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, High rate capabilities Fe3O4-based Cunano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567–573 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    G.H. Lee, J.G. Park, Y.M. Sung, K.Y. Chung, W.I. Cho, D.W. Kim, Enhanced cycling performance of an Fe0/Fe3O4 nanocomposite electrode for lithium-ion batteries. Nanotechnology 20, 295205 (2009)CrossRefGoogle Scholar
  4. 4.
    H.W. Shim, Y.H. Jin, S.D. Seo, S.H. Lee, D.W. Kim, Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano 5, 443–449 (2011)CrossRefGoogle Scholar
  5. 5.
    K.S. Park, S.D. Seo, Y.H. Jin, S.H. Lee, H.W. Shim, D.H. Lee, D.W. Kim, Synthesis of cuprous oxide nanocomposite electrodes by room-temperature chemical partial reduction. Dalton Trans. 40, 9498–9530 (2011)CrossRefGoogle Scholar
  6. 6.
    W. Zhang, Fu Liu, Q. Li, Q. Shou, J. Cheng, L. Zhang, J. Bradley, X. Nelson, Zhang, Transition metal oxide and graphene nanocomposites for high-performance electrochemical capacitors. Phys. Chem. Chem. Phys. 14, 16331–16337 (2012)CrossRefGoogle Scholar
  7. 7.
    M.J. Deng, F.L. Huang, I.W. Sun, W.T. Tsai, J.K. Chang, An entirelyelectrochemical preparation of a nanostructured cobalt oxide electrode with superior redox activity. Nanotechnology, 20(17), 175602 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Kim, I.B. Shim, Z.O. Araci et al., Synthesis and colloidal polymerization of ferromagnetic Au–Co nanoparticles into Au–Co3O4 nanowires. J. Am. Chem. Soc. 132(10), 3234–3235 (2010)CrossRefGoogle Scholar
  9. 9.
    Y. Xue, H. Chen, D. Yu, S. Wang, M. Yardeni, Q. Dai, M. Guo, Y. Liu, F. Lu, J. Qu, L. Dai, Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications. Chem. Commun. 47, 11689–11691 (2011)CrossRefGoogle Scholar
  10. 10.
    L.L. Zhang, X. Zhao, M.D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger, R.S. Ruoff, Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett. 12, 1806–1812 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    G. Wang, X. Sun, F. Lu, H. Sun, M. Yu, W. Jiang, C. Liu, J. Lian, Flexible pillared graphene-paper electrodes for high-performance electrochemical” supercapacitors. Small 8, 452–459 (2012)CrossRefGoogle Scholar
  12. 12.
    N. Yan, L. Hu, Y. Li et al., Co3O4 nanocages for high performance anode material in lithium-ion batteries. J. Phys. Chem. C 116(12), 7227–7235 (2012)CrossRefGoogle Scholar
  13. 13.
    R. Ramkumar, M. Minakshi, Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Trans. 44(13), 6158–6168 (2015)CrossRefGoogle Scholar
  14. 14.
    R. Samal, B. Dash, C. K. Sarangi, Influence of synthesis temperature on the growth and surface morphology of Co3O4 nanocubes for supercapacitor applications. Nanomaterials 7(11), 356 (2017)CrossRefGoogle Scholar
  15. 15.
    J. Kim, B. Yim, The effects of functionalized graphene nanosheets on the thermal and mechanical properties of epoxy composites for anisotropic conductive adhesives (ACAs). Microelectron. Reliab. 52, 595 – 602 (2012)CrossRefGoogle Scholar
  16. 16.
    S. Choi, K. Kim, J. Nam, S.E. Shim, Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites. Carbon 60, 254–265 (2013)CrossRefGoogle Scholar
  17. 17.
    R. Qian, J. Yu, C. Wu, X. Zhai, P. Jiang, Alumina-coated graphene sheet hybrids for electrically insulating polymer composites with high thermal conductivity. RSC Adv. 3, 17373 – 17379 (2013)CrossRefGoogle Scholar
  18. 18.
    F.P. Du, W. Yang, F. Zhang, C.-Y. Tang, S. Liu, L. Yin, W.-C. Law, Enhancing the heat transfer efficiency in graphene—epoxy nanocomposites using a magnesium oxide—graphene hybrid structure. ACS Appl. Mater. Interfaces 7, 14397–14403 (2015)CrossRefGoogle Scholar
  19. 19.
    G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270–274 (2008)CrossRefGoogle Scholar
  20. 20.
    K.P. Loh, Q.L. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010)CrossRefGoogle Scholar
  21. 21.
    X.J. Zhu, Y.W. Zhu, S. Murali, M.D. Stollers, R.S. Ruoff, Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5, 3333–3338 (2011)CrossRefGoogle Scholar
  22. 22.
    P.V. Kumar, N.M. Bardhan, S. Tongay, J. Wu, A.M. Belcher, J.C. Grossman, Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat. Chem. 6, 151–158 (2014)CrossRefGoogle Scholar
  23. 23.
    N. Venkatesha, P. Poojar, Y. Qurishi, S. Geethanath, C. Srivastava, Graphene oxide-Fe3O4 nanoparticle composite with high transverse proton relaxivity value for magnetic resonance imaging. J. Appl. Phys. 117, 154702–154708 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)CrossRefGoogle Scholar
  25. 25.
    A.K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010)CrossRefGoogle Scholar
  27. 27.
    S. Gobalakrishnan, M. Prabu, R. Ganapathi Raman, Synthesis and characterization of few layered graphene oxide prepared using chemical exfoliation method. Int J Appl Eng Res 10, 350–356 (2015)Google Scholar
  28. 28.
    B.D. Cullity, Elements of X-ray diffraction, 3rd. Ed., Prentice-Hall Inc., New York, p 167 (2001)Google Scholar
  29. 29.
    X.D. Peng, M.A. Barteau, Surf. Sci. 233, 283 (Catal. Lett. 7 (1990) 395 (1990)) Google Scholar
  30. 30.
    S. Jason, J.-W. Corneille, D. He, W. Goodman, XPS characterization of ultra-thin MgO films on a Mo(100) surface. Surf. Sci. 306, 269–278 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    V. unasekaran, K. Krishnamoorthy, R. Mohan, S.-J. Kim, An investigation of the electrical transport properties of graphene-oxide thin films. Mater. Chem. Phys. 132, 29–33 (2012)CrossRefGoogle Scholar
  32. 32.
    J. Li, C.Y. Liu, Ag/graphene heterostructures: synthesis, characterization and optical properties. Eur. J. Inorg. Chem. 8, 1244–1248 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    J.I. Paredes et al., Graphene oxide dispersions in organic solvents. Langmuir 24(19), 10560–10564 (2008)CrossRefGoogle Scholar
  34. 34.
    C.Y. Yin, M. Minakshi, D.E. Ralph, Z.T. Jiang et al., Hydrothermal synthesis of cubic α-Fe2O3 microparticles using glycine: surface characterization, reaction mechanism and electrochemical activity. J. Alloys Compd. 509(41), 9821–9825 (2011)CrossRefGoogle Scholar
  35. 35.
    T.R. Penkia, S. Shivakumaraa. M. Minakshib, N. Munichandraiah, Porous flower-like α-Fe2O3 nanostructure: a high performance anode material for lithium-ion batteries. Electrochim. Acta 167, 330–339 (2015)CrossRefGoogle Scholar
  36. 36.
    X. Zhang, B. Jiang, Y. Xie, F. Du, One-pot hydrothermal synthesis of Fe3O4/reduced graphene oxide nanocomposite for enhanced lithium storage. Indian J Chem, 53A 265–273 (2014)Google Scholar
  37. 37.
    S. Guo, G. Zhang, Y. Guo, J.C. Yu, Graphene oxide-Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon 60, 437–444 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Seham K. Abdel-Aal
    • 1
    • 2
    • 4
  • Andrey Ionov
    • 3
  • R. N. Mozhchil
    • 3
  • Alim H. Naqvi
    • 4
  1. 1.Physics Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Egypt Nanotechnology Center EGNCCairo UniversityGizaEgypt
  3. 3.Institute of Solid State Physics, RASMoscowRussia
  4. 4.Interdisciplinary Nanotechnology CentreAligarh Muslim UniversityAligarhIndia

Personalised recommendations