Applied Physics A

, 124:328 | Cite as

Effect of crystallographic orientation on structural and mechanical behaviors of Ni–Ti thin films irradiated by Ag7+ ions

  • Veeresh Kumar
  • Rahul Singhal


In the present study, thin films of Ni–Ti shape memory alloy have been grown on Si substrate by dc magnetron co-sputtering technique using separate sputter targets Ni and Ti. The prepared thin films have been irradiated by 100 MeV Ag7+ ions at three different fluences, which are 1 × 1012, 5 × 1012, and 1 × 1013 ions/cm2. The elemental composition and depth profile of pristine film have been investigated by Rutherford backscattering spectrometry. The changes in crystal orientation, surface morphology, and mechanical properties of Ni–Ti thin films before and after irradiation have been studied by X-ray diffraction, atomic force microscopy, field-emission scanning electron microscopy, and nanoindentation techniques, respectively. X-ray diffraction measurement has revealed the existence of both austenite and martensite phases in pristine film and the formation of precipitate on the surface of the film after irradiation at an optimized fluence of 1 × 1013 ions/cm2. Nanoindentation measurement has revealed improvement in mechanical properties of Ni–Ti thin films after ion irradiation via increasing hardness and Young modulus due to the formation of precipitate and ductile phase. The improvement in mechanical behavior could be explained in terms of precipitation hardening and structural change of Ni–Ti thin film after irradiation by Swift heavy ion irradiation.



V. Kumar is very much thankful to Technical Education Quality Improvement Program (TEQUIP), MNIT Jaipur for the Ph.D. scholarship. R. Singhal acknowledges the financial supports provided by Department of Science & Technology, New Delhi in terms of DST FAST Young Scientist project (SR/FTP/PS-081/2011). The author would like to acknowledge Mr. Sunil Ojha and Mr. S.A. Khan from IUAC, New Delhi for their help and support in RBS and FESEM characterizations. The author is also acknowledging UGC-DAE CSR Indore, for synthesis and characterization of Ni–Ti thin films. The crew of pelletron accelerator IUAC, New Delhi is also highly acknowledged for providing the stable beam of 100 MeV Ag ions.


  1. 1.
    Y. Fu, W. Huang, H. Du, X. Huang, J. Tan, X. Gao, Surf. Coat. Technol. 145, 107–112 (2001)CrossRefGoogle Scholar
  2. 2.
    S. Miyazaki, A. Ishida, Mater. Sci. Eng. A 273–275, 106–133 (1999)CrossRefGoogle Scholar
  3. 3.
    K.T. Oh, U.H. Joo, G.H. Park, C.J. Hwang, K.N. Kim, J. Biomed. Mater. Res. B Appl. Biomater. 76(2), 306–314 (2006)CrossRefGoogle Scholar
  4. 4.
    J.H. Sui, W. Cai, Appl. Surf. Sci. 253, 2050–2055 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    K. Otsuka, T. Kakeshita, MRS Bull. 27, 91–100 (2002)CrossRefGoogle Scholar
  6. 6.
    K. Otsuka, X. Ren, Intermetallics 7, 511–528 (1999)CrossRefGoogle Scholar
  7. 7.
    M.M. Silva, L. Pichon, M. Drouet, J. Otubo, Surf. Coat. Technol. 211, 209–212 (2012)CrossRefGoogle Scholar
  8. 8.
    P. Krulevitch, P.B. Ramsey, D.M. Makowiecki, A.P. Lee, M.A. Northrup, G.C. Johnson, Thin Solid Films 274, 101–105 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    V. Kumar, R. Singhal, R. Vishnoi, M.K. Banerjee, M.C. Sharma, K. Asokan, M. Kumar, Radiat Eff. Defects Solids 172, 629–642 (2017)CrossRefGoogle Scholar
  10. 10.
    H. Richard, H.A. Wolf, J. Microelectromech. Syst. 4, 206–212 (1995)CrossRefGoogle Scholar
  11. 11.
    Y.Q. Fu, J.K. Luo, A.J. Flewitt, Inter. J. Nanomanufacturing 2, 208–225 (2009)Google Scholar
  12. 12.
    Y. Fu, H. Du, W. Huang, S. Zhang, M. Hu, Sens. Actuators, A 112, 395–408 (2004)CrossRefGoogle Scholar
  13. 13.
    S.K. Wu, H.C. Lin, C.Y. Lee, Surf. Coat. Technol. 113, 13–16 (1999)CrossRefGoogle Scholar
  14. 14.
    F.M. El-Hossary, S.M. Khalil, M.A. Kassem, M.A. Lateef, K. Lotfy, JBAP 3, (2014) 54–67Google Scholar
  15. 15.
    R.G. Vitchev, H. Kumar, B. Blanpain, J.V. Humbeeck, Biomaterials 23, 4863–4871 (2002)CrossRefGoogle Scholar
  16. 16.
    H.C. Man, Z.D. Cui, T.M. Yue, Scripta Mater. 45, 1447–1453 (2001)CrossRefGoogle Scholar
  17. 17.
    X.T. Zu, L.B. Lin, Z.G. Wang, S. Zhu, L.P. You, L.M. Wang, Y. Huo J. Alloys Compd. 351, 87–90 (2003)CrossRefGoogle Scholar
  18. 18.
    N. Afzal, I.M. Ghauri, F.E. Mubarik, F. Amin, Phys. B 406, 8–11 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    H. Pelletier, D. Muller, P. Mille, J.J. Grob, Surf. Coat. Technol. 158–159, 301–308 (2002)CrossRefGoogle Scholar
  20. 20.
    S.K. Wu, C.L. Chu, H.C. Lin, Surf. Coat. Technol. 92, 197–205 (1997)CrossRefGoogle Scholar
  21. 21.
    H.C. Lin, H.M. Liao, J.L. He, K.M. Lin, K.C. Chen, Surf. Coat. Technol. 92, 178 (1997)CrossRefGoogle Scholar
  22. 22.
    Y. Quinn, R.T. Kraft, R.W. Hertzberg, R.W. Trans Am. Soc. Metals 62, 38–44 (1969)Google Scholar
  23. 23.
    T. Lagrange, C. Abromeit, R. Gotthardt, Mater. Sci. Eng. A 438–440, 521–526 (2006)CrossRefGoogle Scholar
  24. 24.
    Q.Z. An, K. Feng, H. Lu, X. Cai, T. Sun, P.K. Chu, Trans. Nonferrous Met. Soc. China 25, 1944–1949 (2015)CrossRefGoogle Scholar
  25. 25.
    Y. Nunomura, H. Kaneno, T. Tsuda, Takasugi, Intermetallics 12, 389–399 (2004)CrossRefGoogle Scholar
  26. 26.
    B. Naveen Kumar, N.K. Reddy, Udayashankar, Surf. Interfaces 5, 62–71 (2016)CrossRefGoogle Scholar
  27. 27.
    C. Chluba, W. Ge, R.L. Miranda, J. Strobel, L. Kienle, E. Quandt, M. Wuttig, Science 348, 1004–1007 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    A. Ishida, A. Takei, M. Sato, S. Miyazaki, Thin Solid Films 281–282, 337–339 (1996)CrossRefGoogle Scholar
  29. 29.
    D.J. Hart, J.T. Mooney, D.C. Lagoudas, F.T. Calkins, J.H. Mabe, Smart Mater. Struct. 19, 01502 (2009)Google Scholar
  30. 30.
    Y. Nunomura, Y. Kaneno, H. Tsuda, T. Takasugi, Intermetallics 12, 389–399 (2004)CrossRefGoogle Scholar
  31. 31.
    T. Lagrange, R. Schaublin, D.S. .Grummon, C. Abromeit, R. Gotthardt, Philos. Mag. 85, 577–587 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    F.F. Gong, H.M. Shen, Y.N. Wang Mater. Lett. 25, 13–16 (1995)CrossRefGoogle Scholar
  33. 33.
    D.K. Avasthi, G.K. Mehta, swift heavy ions for materials engineering and nanostructuring. Springer Series in Materials Science, 145 (2011)Google Scholar
  34. 34.
    R. Kumar, S.B. Samanta, S.K. Arora, A. Gupta, D. Kanjilal, R. Pinto, A.V. Narlikar, Solid-State Commun. 12, 805–810 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    F. Studer, M. Toulemonde, Nucl. Instr. and Meth. B 65, 560–567 (1992)ADSCrossRefGoogle Scholar
  36. 36.
    A. Barbu, A.H. Dunlop, G. Duparc, N. Jaskierowicz, Lorenzelli, Nucl. Instrum. Methods Phys. Res., Sect. B 145, 354–372 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    L. Shijie Hao, J. Cui, F. Jiang, X. Guo, D. Xiao, C. Jiang, Yu,. Brown, Zonghai Chen, Hua Zhou, Yandong Wang, YuZi Liu, Dennis E. Yang Ren, Sci. Rep. 4, 1–6 (2014)Google Scholar
  38. 38.
    P. Luo, S.N. Wang, T.T. Zhao, Y. Li, Rare Met. 32(2), 113–121 (2013)CrossRefGoogle Scholar
  39. 39.
    R. Vishnoi, R. Singhal, K. Asokan, J.C. Pivin, D. Kanjilal, D. Kaur, Vacuum 89, 190–196 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    V. Kumar, R. Singhal, R. Vishnoi, M. Gupta, P. Sharma, M.K. Banerjee, K. Asokan, H. Sharma, A. Gupta, D. Kanjilal, Adv. Mat. Lett. 8(4), 486–492 (2017)CrossRefGoogle Scholar
  41. 41.
    J.F. Ziegler, J.P. Biersack, V. Littmark, The stopping and range of ions in solids. (Pergamon, New York, 1985)Google Scholar
  42. 42.
    W.O. Adeoya, M.H. Ali, J.C. Muller, P. Siffert, Appl. Phys. Lett. 50, 1736–1738 (1987)ADSCrossRefGoogle Scholar
  43. 43.
    G. Shugar, J. Ballinger, Chemical Technicianʹ Ready reference handbook. (McGraw-Hill, New York, 1996)Google Scholar
  44. 44.
    H.P. Klug, L.E. Alexander, X-ray diffraction procedures for polycrystalline and amorphous materials. (Wiley, New York, 1974)Google Scholar
  45. 45.
    R. Singhal, D. Kabiraj, P.K. Kulriya, J.C. Pivin, R. Chandra, D.K. Avasthi, Plasmonic 8(2), 295–305 (2013)CrossRefGoogle Scholar
  46. 46.
    H.S. Zhang, J.L. Endrino, A. Anders, Appl. Surf. Sci. 255, 2551–2556 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    H. Pelletiera, D. Mullerb, P. Millea, J.J. Grob, Surf. Coat. Technol 158–159, 301–308 (2002)CrossRefGoogle Scholar
  48. 48.
    R. Singhal, R. Vishnoi, K. Asokan, D. Kanjilal, D. Kaur, Vacuum 89, 215–219 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    R. Vishnoi, R. Singhal, K. Asokan, D. Kanjilal, D. Kaur, Thin Solid Films 520, 1631–1637 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    M. Silva, L. Pichon, M. Drouet, J. Otubo, Surf. Coat. Technol. 211, 209–212 (2012)CrossRefGoogle Scholar
  51. 51.
    W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564–1583 (1992)ADSCrossRefGoogle Scholar
  52. 52.
    H. Conrad, J. Narayan, K. Jung, Int. J. Refract. Met. Hard Mater. 23, 301–305 (2005)CrossRefGoogle Scholar
  53. 53.
    T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman, S.M. Fisher, Engineering aspects of shape memory alloys (Elsevier, 1990)Google Scholar
  54. 54.
    H.J. Lee, H. Ni, D.T. Wu, A.G. Ramirez, Mater. Trans. 47(3), 527–531 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsMalaviya National Institute of Technology JaipurJaipurIndia

Personalised recommendations