Applied Physics A

, 124:314 | Cite as

Synthesis of dense TiO2 nanoparticle multilayers using spin coating technique

  • L. Ajith DeSilva
  • Madhavi Thakurdesai
  • T. M. W. J. Bandara
  • Joshua Preston
  • Wyatt Johnson
  • Anne Gaquere-Parker
  • Smita Survase
Article
  • 50 Downloads

Abstract

A stack of nine layers is prepared by sequential spun casting of commercially available colloidal TiO2 nanoparticles of average size of 10–15 nm. Scanning electron microscopy (SEM) is employed to investigate the surface morphology of the multilayers. SEM micrographs exhibit formation of highly uniform and dense TiO2 nanoparticle layers. The uniformity and density is found to be increasing with layer thickness. Structural characterization is carried out using X-ray diffraction (XRD) technique. XRD spectra indicate improvement in crystalline quality of all the layers with increasing layer thickness. All the layers are having mainly the anatase phase of TiO2. Optical characterization is carried out by UV–visible spectroscopy. The value of bandgap estimated on the basis of absorption coefficient is found to be 3.26 eV and approximately remains the same for the layers. The electrical characterization suggests that multilayer resistivity increases with increasing layer thickness. The good quality spin coated thin dense TiO2 layers have many applications in optoelectronics.

Notes

Acknowledgements

Financial support from UWG SEEP and SRAP and COSM FRG programs are acknowledged. Support from the Faculty exchange program between the UWG (USA) and the Birla Collage, Kalyan (India) is acknowledged. Help rendered by Prof. Sandip Ghosh, Ms. Bhagyashri Chalke, TIFR, Mumbai, India is also acknowledged.

References

  1. 1.
    A. Alyamani, L. Tataroğlu, A. El MirAhmed, H. Al-Ghamdi, W.A. Dahman, F. Farooq, Yakuphanoğlu, Appl. Phys. A 297, 01–08 (2016)Google Scholar
  2. 2.
    V. Kılıç, Çelik, Appl. Phys. A 119, 783–790 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    L.S. Luca, J. Hsu, Optoelectron. Adv. Mater. 5, 835–840 (2003)Google Scholar
  4. 4.
    K.M. Reddy, S.V. Manorama, A.R. Reddy, Mater. Chem. Phys. 78, 239–245 (2002)CrossRefGoogle Scholar
  5. 5.
    M. Thakurdesai, T. Mohanty, J. John, T.K. Gundu Rao, P. Raychaudhuri, V. Bhattacharyya, D. Kanjilal, J Nano Sci. Nano Technol. 8, 4231–4237 (2008)CrossRefGoogle Scholar
  6. 6.
    J.H. Prosser, T. Brugarolas, S. Lee, A.J. Nolte, D. Lee, Nano Lett. 12, 5287–5291 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Bai, I. Mora-Seró, F. Angelis, J. Bisquert, P. Wang, Chem. Rev. 114, 10095–10130 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Tan, A. Argondizzo, J. Ren, L. Liu, J. Zhao, H. Petek, Nat. Photon. 11, 806–812 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    W. Fan, Y. Bing, W. Zengbo, W. Limin, Sci. Adv. 2, 01–08 (2016)CrossRefGoogle Scholar
  10. 10.
    A. Maqusood, M.A. Majeed Khan, M.J. Akhtar, H. Alhadlaq, A. Alshamsan, Sci. Rep. 7, 01–14 (2017)CrossRefGoogle Scholar
  11. 11.
    J.J. Huang, S.P. Chiu, M.J. Wu, C. Hsu, Appl. Phys. A 971, 01–08 (2016)Google Scholar
  12. 12.
    M. Marichy, N. Bechelany, Pinna, Adv. Mater. 24, 1017–1032 (2012)CrossRefGoogle Scholar
  13. 13.
    S. Hwan, Y. Joon, Thin Solid Films 547, 91–94 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Z.S. Wang, T. Sasaki, M. Muramatsu, Y. Ebina, T. Tanaka, M. Wataanbe, Chem. Mater. 15, 807–812 (2003)CrossRefGoogle Scholar
  15. 15.
    V.I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J.A. Hollingsworth, C.A. Leatherdale, M.G. Bawendi, Science 290, 314–317 (2000)ADSCrossRefGoogle Scholar
  16. 16.
    J. Won, C.H. Wang, H.K. Jang, D.J. Choi, Appl. Phys. A 73, 595–600 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    R. Schaub, P. Thostrup, N. Lopez, E. Lægsgaard, I. Stensgaard, J.K. Nørskov, F. Besenbacher, Phys. Rev. Lett. 87, 01–09 (2001)CrossRefGoogle Scholar
  18. 18.
    L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, H. Fu, J. Phys. Chem. B 110, 17860–17865 (2006)CrossRefGoogle Scholar
  19. 19.
    M. Ben Rabeh, N. Khedmi, M.A. Fodha, M. Kanzari, Energy Proc. 44, 52–60 (2014)CrossRefGoogle Scholar
  20. 20.
    A.S. Hassanien, A.A. Aki, Superlattices Microstruct. 89, 153–169 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    M. Sta, M. Jlassi, M.F. Hajji, R. Boujmil, M. Jerbi, M. Kandyla, H. Kompitsas, Ezzaouia, J. Sol Gel Sci. Technol. 72, 421–427 (2014)CrossRefGoogle Scholar
  22. 22.
    S. Hassanienab, A.A. Akl, J. Alloys Compd. 648, 280–290 (2015)CrossRefGoogle Scholar
  23. 23.
    US Research Nanomaterials, Inc. http://www.us-nano.com/
  24. 24.
    M.W. Zhuab, J.H. Xiaa, R.J. Honga, H. Abu Samraa, H. Huangb, T. Staedlera, J. Gongb, C. Sunb, X. Jiangab, J. Cryst. Growth 310, 816–823 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    L. Znaidia, G.J. Illiab, S. Benyahiaa, C. Sanchezb, A.V. Kanaev, Thin Solid Films 428, 257–262 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    X. Zhang, Y. He, M.L. Sushko, J. Liu, L. Luo, J.D. Yoreo, X. Scott, W. Chongmin, K. Rosso, Science, 356, 434–437, (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Min, M. Akbulut, K. Kristiansen, Y.Golan,J. Israelachvili, Nat. Mater. 7, 527–538 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    Standard X-ray Diffraction Patterns: JCPDS data 00-064-0863Google Scholar
  29. 29.
    W. Zeng, L. Tianmo, W. Zhongchang, T. Susumu, S. Mitsuhiro Saito, I. Yuichi, Mater. Trans. 51, 171–175 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Thakurdesai, D. Kanjilal, V. Bhattacharya, Semicond. Sci. Technol. 24, 085023–085030 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    N. Saigal, V. Sugunakar, S.Ghosh, Appl. Phys. Lett. 108, 132105 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    A. Ruth, J.A. Young, Colloids Surf. A 279, 121–127 (2006)CrossRefGoogle Scholar
  33. 33.
    S. Survase, I. Sulania, H. Narayan, M. Thakurdesai, NIMB 387, 01–09 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    L. Yang, L. Jiang, W. Fu, A.W. Weimer, X. Hu, Y. Zhou, Appl. Phys. A 123, 416 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    T.M.W.J. Bandara, M. Dissanayake, I. Albinsson, B.E. Mellander, J. Power Sources 195, 3730–3734 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    L.A. DeSilva, P.K.D.D.P. Pitigala, A. Gaquere-Parker, R. Landry, J.E. Hasbun, V. Martin, T.M.W.J. Bandara, A.G.U. Perera, J. Mater. Sci. Mater. Electron. 28, 7724–7729 (2017)CrossRefGoogle Scholar
  37. 37.
    A. Burke, S. Ito, H. Snaith, U. Bach, J. Kwiatkowski, M. Grätzel, Nano Lett. 8, 977–981 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    L.A. DeSilva, R. Gadipalli, A. Donato, T.M.W.J. Bandara, Optik 157, 360–364 (2018)ADSCrossRefGoogle Scholar
  39. 39.
    G. Thomas, Nature 389, 907–908 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of West GeorgiaCarrolltonUSA
  2. 2.Thin Film Research Laboratory, Department of PhysicsBirla College (Affiliated to University of Mumbai)KalyanIndia
  3. 3.Department of Physics and Postgraduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  4. 4.Department of ChemistryUniversity of West GeorgiaCarrolltonUSA

Personalised recommendations