Applied Physics A

, 124:297 | Cite as

Hydrothermal development and characterization of the wear-resistant boron carbide from Pandanus: a natural carbon precursor

  • H. V. Saritha Devi
  • M. S. Swapna
  • G. Ambadas
  • S. Sankararaman


Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet–Visible absorption spectroscopy. The formation of B4C from natural carbon source—Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.



One of the authors G. Ambadas is thankful to University Grants Commission, New Delhi for the financial support in the form of a Minor project.


  1. 1.
    R. Ma, Y. Bando, Chem. Mater. 14, 4403 (2002)CrossRefGoogle Scholar
  2. 2.
    X. Song, H. Cui, Y. Han, N. Hou, N. Wei, L. Ding, Q. Song, Mater. Sci. Eng. A 684, 406 (2017)CrossRefGoogle Scholar
  3. 3.
    X. Guo, G. Zhang, H. Cui, N. Wei, X. Song, J. Li, J. Tian, Appl. Catal. B Environ. 217, 12 (2017)CrossRefGoogle Scholar
  4. 4.
    X. Song, Y. Han, X. Wang, W. Liu, J. Wu, H. Cui, Ceram. Int. 44, 1756 (2018)CrossRefGoogle Scholar
  5. 5.
    K. Madhav Reddy, P. Liu, A. Hirata, T. Fujita, M.W. Chen, Nat. Commun. 4, 2483 (2013)Google Scholar
  6. 6.
    H.O. Pierson, Handbook of refractory carbides and nitrides: Properties, Characteristics, Processing and Applications. (Noyes Publications, USA, 1996)Google Scholar
  7. 7.
    T.Y. Kosolopova, Carbides: Properties, Production and Applications. (Plenum Press, New York, 1971)Google Scholar
  8. 8.
    G.V. Samsonov (ed) Refractory carbides (Springer, USA, 1974)Google Scholar
  9. 9.
    M.S. Swapna, H.V. Saritha Devi, S. Riya, G. Ambadas, S. Sankararaman, Mater. Res. Express. 4, 125602 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    T. Mangesh, A. Jadhav, IOSR-JPTE 4, 07 (2017)CrossRefGoogle Scholar
  11. 11.
    H.T.N. Kuan, M.C. Lee, JASPE 1, 39 (2014)Google Scholar
  12. 12.
    H.V. Saritha Devi, M.S. Swapna, R. Vimal, G. Ambadas, S. Sankararaman, Mater. Res. Express. 5, 015603 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    W.A. Rahman, S.N.A. Sudin, S.N. Din, IEEE Symposium on Humanities, Science and Engineering Research, vol. 345 (Kuala Lumpur, Malaysia, 2012)Google Scholar
  14. 14.
    H. Abral, H. Andriyanto, R. Samera, S.M. Sapuanb, M.R. Ishak, Polym. Plast. Technol. Eng. 51, 500 (2012)CrossRefGoogle Scholar
  15. 15.
    C. Parida, S.K. Dash, C. Pradhan, J. Compos. Mater. 5, 5 (2015)Google Scholar
  16. 16.
    R.E. Franklin, Acta Cryst. 4, 253 (1951)CrossRefGoogle Scholar
  17. 17.
    L.E. Jones, P.A. Thrower, Carbon 29, 251 (1991)CrossRefGoogle Scholar
  18. 18.
    Y.J. Lee, Y.J. Hatori, Chem. Phy. Lett. 362, 326 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    F. Mizi, D. Dai, B. Huang, Fourier transform infrared spectroscopy for natural fibers (Salih Mohammed Salih, ed. Chapter 3 in Fourier Transform–Materials Analysis, INTECH 45, (2012)Google Scholar
  20. 20.
    O. Arellano, M. Flores, J. Guerra, A. Hidalgo, D. Rojas, A. Strubinger. Chem. Eng. Trans. 50, 235 (2016)Google Scholar
  21. 21.
    R. Saai Harini, E. Manikandan, S. Anthonysamy, V. Chandramouli, D. Eswaramoorthy, In: Proceedings of the 57th DAE Solid State Physics Symposium, 2012, AIP Conf. Proc. 1512, 1244, (2013)Google Scholar
  22. 22.
    L.M. Proniewich, C. Paluszkiewicz, A. Weselucha-Birczynska, H. Majcherczyk, A. Baranski, A. Konieczna, J. Mol. Struc. 596, 163 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    O. Avciata, C. Ergun, I. Erden, C. Ustundag, S. Yilmaz, S. Cihangir, In: ICC2 Proceedings on Global Roadmap for Ceramics, Verona, (2008)Google Scholar
  24. 24.
    J. Sun, H. Ling, W.J. Pan, N. Xu, Z.F. Ying, W.D. Shen, J.D. Wu, Tribiol. Lett. 17, 99 (2004)CrossRefGoogle Scholar
  25. 25.
    S. Mondal, A.K. Banthia, J. Eur. Ceram. Soc. 25, 287 (2005)CrossRefGoogle Scholar
  26. 26.
    D. Simeone, C. Mallet, P. Dubuisson, G. Baldinozzi, C. Gervais, J. Maquet, J. Nuc. Mat. 277, 1 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    X.Q. Yan, w.J. Li, T. Goto, M.W. Chen, Appl. Phy. Lett. 88, 131905 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    J.H. Wiley, R.H. Atalla, IPC Technical Paper Series No. 220, (1987)Google Scholar
  29. 29.
    H.T. Li, Z.H. Kang, Y. Liu, S.T. Lee, J. Mater. Chem. 22, 24230 (2012)CrossRefGoogle Scholar
  30. 30.
    D. Ghosh, G. Subhash, C.H. Lee, Y.K. Yap, Appl. Phys. Lett. 91, 061910 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Nanoscience and Nanotechnology and Department of OptoelectronicsUniversity of Kerala, KariavattomThiruvananthapuramIndia
  2. 2.Government Victoria CollegePalakkadIndia

Personalised recommendations