Advertisement

Applied Physics A

, 124:323 | Cite as

Structural changes and magnetism in Bi1−xBa x FeO3 (x = 0, 0.1, 0.2, 0.3) nanopowders

  • Anju Jindal
  • Ashish Agarwal
  • Praveen Aghamkar
Article
  • 114 Downloads

Abstract

Bi1−xBa x FeO3 (x = 0, 0.1, 0.2 and 0.3) ceramic nanopowders were prepared by the ethylene glycol-based sol–gel method followed by heat treatment at 800 °C for 1 h. The effect of Ba2+ ions substitution on the structural and magnetic properties of the BiFeO3 (BFO) has been investigated. X-ray diffraction along with Rietveld refinement of Ba-substituted samples showed the presence of both rhombohedral (R3c) and pseudocubic (Pm3m) phases. Microstructural analysis confirmed the formation of homogeneous and nearly cubic nanoparticles. Result shows a reasonable enhancement in saturation magnetization of the substituted samples. Bi0.9Ba0.1FeO3 having 30% R3c and 70% Pm3m phases, show maximum saturation magnetization, i.e., 0.32 emu/g at room temperature. The magnetic properties of synthesized ceramics have been discussed in terms of FeO6 octahedra tilting with respect to body diagonal <111> of the pseudocubic system. By combining magnetic measurements with thermal analysis, it is shown that the substitution of Ba for Bi site causes an enhancement in magnetic transition temperature (TN).

Notes

Compliance with ethical standards

Conflict of interest

Authors certify that there is no conflict of interest with any financial or non-financial organization regarding the material discussed in the manuscript.

References

  1. 1.
    N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309, 391 (2005)CrossRefGoogle Scholar
  2. 2.
    W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    Y.P. Wang, L. Zohu, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    R. Seshadri, N.A. Hill, Visualizing the role of Bi 6 s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem. Mater. 13, 2892 (2001)CrossRefGoogle Scholar
  7. 7.
    I. Dzyaloshinsky, A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)ADSCrossRefGoogle Scholar
  8. 8.
    T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)ADSCrossRefGoogle Scholar
  9. 9.
    G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463 (2009)CrossRefGoogle Scholar
  10. 10.
    B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, D. Viehland, Magnetic-field-induced phase transition in BiFeO3 observed by high-field electron spin resonance: cycloidal to homogeneous spin order. Phys. Rev. B 69, 064114 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    J.F. Li, J.L. Wang, M. Wuttig, R. Ramesh, N. Wang, B. Ruette, A.P. Pyatakov, A.K. Zvezdin, D. Viehland, Dramatically enhanced polarization in (001), (101), and (111) BiFeO3 thin films due to epitaxial-induced transitions. Appl. Phys. Lett. 84, 5261 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    V.R. Palkar, D.C. Kundaliya, S.K. Malik, S. Bhattacharya, Magnetoelectricity at room temperature in the Bi0.9–xTbxLa0.1FeO3 system. Phys. Rev. B 69, 212102 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    T.J. Park, G.C. Papaefthymiou, A.J. Viescas, A.R. Moodenbaugh, S.S. Wong, Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. Nano Lett. 7, 766 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J. Zhang, Y.J. Wu, X.K. Chen, X.J. Chen, Structure evolution and magnetization enhancement of Bi 1 – xTbxFeO3. J. Phys. Chem. Solids 74, 849 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    S. Godara, B. Kumar, Effect of Ba–Nb co-doping on the structural, dielectric, magnetic and ferroelectric properties of BiFeO3 nanoparticles. Ceram. Int. 41, 6912 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Karimi, I.M. Reaney, Y. Han, J. Pokorny, I. Sterianou, Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J. Mater. Sci. 44, 5102 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M. Rangi, A. Agarwal, S. Sanghi, R. Singh, S.S. Meena, A. Das, Crystal structure and magnetic properties of Bi0.8Ba0.2FeO3 (A = La, Ca, Sr, Ba) multiferroics using neutron diffraction and Mossbauer spectroscopy. AIP Adv. 4, 087121 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    S. Vijayanand, H.S. Potdar, P.A. Joy, Origin of high room temperature ferromagnetic moment of nanocrystalline multiferroic BiFeO3. Appl. Phys. Lett. 94, 182507 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    J.P. Gonjal, M.E.V. Castrejon, L. Fuentes, E. Moran, Microwave–hydrothermal synthesis of the multiferroic BiFeO3. Mater. Res. Bull. 44, 1734 (2009)CrossRefGoogle Scholar
  20. 20.
    G.S. Lotey, N.K. Verma, Structural, magnetic and electrical properties of Gd-doped BiFeO3 nanoparticles with reduced particle size. J. Nanopart. Res. 14(11), 742 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    S.M. Selbach, T. Tybell, M.A. Einarsrud, T. Grande, Size-dependent properties of multiferroic BiFeO3 nanoparticles. Chem. Mat. 19, 6478 (2007)CrossRefGoogle Scholar
  22. 22.
    J. Sliva, A. Reyes, H. Esparza, H. Camacho, L. Fuentes, BiFeO3: a review on synthesis, doping and crystal structure. Integr. Ferroelectr. 126, 47 (2011)CrossRefGoogle Scholar
  23. 23.
    C.H. Yang, D. Kan, I. Takeuchi, V. Nagarajan, J. Seidel, Doping BiFeO3: approaches and enhanced functionality. Phys. Chem. Chem. Phys. 14, 15953 (2012)CrossRefGoogle Scholar
  24. 24.
    V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, L. Jian, A.L. Kholkin, A.M.L. Lopes, Y.G. Pogorelov, J.P. Araujo, M. Maglione, Effect of diamagnetic Ca, Sr, Pb, and Ba substitution on the crystal structure and multiferroic properties of the BiFeO3 perovskite. J. Appl. Phys. 103, 024105 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    R. Das, K. Mandal, Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3. J. Magn. Magn. Mater. 324, 1913 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    R. Das, S. Sharma, K. Mandal, Aliovalent Ba2+ doping: A way to reduce oxygen vacancy in multiferroic BiFeO3. J. Magn. Magn. Mater. 401, 129 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    J. Dzik, A. Lisinska-Czakaj, A. Zarycka, D. Czekaj, Study of phase and chemical composition of Bi1−xNdxFeO3 powders derived by pressureless sintering. Arch. Metall. Mater. 58, 1371 (2013)CrossRefGoogle Scholar
  28. 28.
    G. Biasotto, A.Z. Simões, C.R. Foschini, S.G. Antônio, M.A. Zaghete, J.A. Varela, A novel synthesis of perovskite bismuth ferrite nanoparticles. Process Appl Ceram 5, 171 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Zhao, S. Liu, W. Zhang, Z. Liu, Z. Liu, Structural and magnetic properties of Er-doped BiFeO3 nanoparticles. J. Nanopart. Res. 15, 1969 (2013) (7pp) ADSCrossRefGoogle Scholar
  30. 30.
    A. Anju, P. Agarwal, B. Aghamkar, V. Lal, Singh, Crystal symmetry and magnetism in Ti substituted Bi0.8 Ba0.2FeO3 ceramic. Ceram. Int. 43, 7408 (2017)CrossRefGoogle Scholar
  31. 31.
    S.M. Selbach, M.A. Einarsrud, T. Grande, On the thermodynamic stability of BiFeO3. Chem. Mater. 21, 169 (2009)CrossRefGoogle Scholar
  32. 32.
    P. Kumar, N. Shankhwar, A. Srinivasan, M. Kar, Oxygen octahedra distortion induced structural and magnetic phase transitions in Bi1−xCaxFe1−xMnxO3 ceramics. J. Appl. Phys. 117, 194103 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    H. Deng, M. Zhang, Q. Zhong, J. Wei, H. Yan, Effect of Mn doping on multiferroic properties in Bi0.8Ba0.2FeO3 ceramics. Ceram. Int. 40, 5869 (2014)CrossRefGoogle Scholar
  34. 34.
    P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceram. Int. 40, 7805 (2014)CrossRefGoogle Scholar
  35. 35.
    S. Karimi, I.M. Reaney, I. Levin, I. Sterianou, Nd-doped BiFeO3 ceramics with antipolar order. Appl. Phys. Lett. 94, 112903 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    A. Anju, P. Agarwal, V. Aghamkar, O. Singh, A. Singh, Kumar, Structural transitions and multiferrocity in Ba and Co substituted nanosized bismuth ferrite. J. Alloys Compd. 697, 333 (2017)CrossRefGoogle Scholar
  37. 37.
    A.M. Glazer, The classification of tilted octahedra in perovskites. Acta Cryst. B28, 3384 (1972)CrossRefGoogle Scholar
  38. 38.
    I.W. Chen, I.R. Ishizaki, K. Nihara, Design and Role of Grain Boundary in Ceramics, (Elsevier, New York, 1992), p. 254Google Scholar
  39. 39.
    Y. Yao, W. Liu, Y. Chan, C. Leung, C. Mak, Studies of rare-earth-doped BiFeO3 ceramics. Int. J. Appl. Ceram. Technol. 8, 1246 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Materials Science LabChaudhary Devi Lal UniversitySirsaIndia
  2. 2.Department of Applied PhysicsGuru Jambheshwar University of Science & TechnologyHisarIndia

Personalised recommendations