Applied Physics A

, 124:353 | Cite as

Study of the effect of synthetic procedure on microstructure, defects and magnetism of multiferroic CuFeO2 ceramics

  • Lei Zhang
  • Xiaojun Tan
  • Dingkang Xiong
  • Zhenping Chen
  • Shoulei Xu
  • Wen Deng


In this work, the multiferroic material CuFeO2 (CFO) ceramic is fabricated by solid-state reaction with different synthetic procedure. The effects of synthetic procedure on microstructure, evolution of defects and magnetic properties of CFO ceramic are studied in detail. The phase structure and morphology of CFO ceramic that depend on the synthetic procedure are indicated by X-ray diffraction and scanning electron microscopy results, respectively. X-ray photoelectron spectroscopy measurements show the impure Cu2+ ions are present in all CFO samples. Positron annihilation technique is applied for detection of defects and electron density of positron traps. The results reveal that the vacancy defects are present in all samples and the average size of defects and geometry of volume defects increases significantly with the increasing sintering temperature, while the concentration and distribution of electron density of positron traps remains the same. The typical results are that the lifetime τ2 increases from 0.399 to 0.559 ns and the density I2 decrease from 25.1 to 8.2% for samples sintered at 950 and 1100 °C, respectively. Magnetic measurements display that the stability of antiferromagnetic phase is inhibited by sintering temperature but not affected by sintering time. The research shows that the stability of antiferromagnetic phase is mostly related with lattice structure, element valence state and the evolution of vacancy defects within samples under different synthetic procedure.



This work was supported by the National Natural Science Foundation of China (Grant nos. 11264002, 11675149 and 11675043).


  1. 1.
    S.K. Mandal, S. Singh, R. Debnath, A. Nath, P. Dey, Magnetoelectric coupling, dielectric and electrical properties of xLa0.7Sr0.3MnO3-(1 − x)Pb(Zr0.58Ti0.42)O3 (x = 0.05 and 0.1) multiferroic nanocomposites. J. Alloy. Compd. 720, 550–561 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Tokura, S. Seki, Multiferroics with spiral spin orders. Adv. Mater. 22, 1554–1565 (2010)CrossRefGoogle Scholar
  3. 3.
    F. Ansari, A. Sobhani, M.S. Niasari, Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping and reducing agents. J. Colloid Interface Sci. 514, 723–732 (2017)ADSCrossRefGoogle Scholar
  4. 4.
    F. Ansari, A. Sobhani, M.S. Niasari, Facile synthesis, characterization and magnetic property of CuFe12O19 nanostructures via a sol–gel auto-combustion process. J. Magn. Magn. Mater. 401, 362–369 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    S. Dash, R.N.P. Choudhary, P.R. Das, A. Kumar, Effect of KNbO3 modification on structural, electrical and magnetic properties of BiFeO3. Appl. Phys. A Mater. 118, 1023–1031 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    S.K. Pradhan, S.N. Das, S. Bhuyan, C. Behera, R. Padhee, R.N.P. Choudhary, Structural, dielectric and impedance characteristics of lanthanum-modified BiFeO3–PbTiO3 electronic system. Appl. Phys. A Mater. 122, 604-1–604-9 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    X.Q. Qiu, M. Liu, K. Sunada, M. Miyauchi, K. Hashimoto, A facile one-step hydrothermal synthesis of rhombohedral CuFeO2 crystals with antivirus property. Chem. Commun. 48, 7365–7367 (2012)CrossRefGoogle Scholar
  8. 8.
    Y.J. Jang, Y.B. Park, H.E. Kim, Y.H. Choi, S.H. Choi, J.S. Lee, Oxygen-Intercalated CuFeO2 photocathode fabricated by hybrid microwave annealing for efficient solar hydrogen production. Chem. Mater. 28, 6054–6061 (2016)CrossRefGoogle Scholar
  9. 9.
    M.Q. Cai, Y.Z. Zhu, Z.S. Wei, J.Q. Hu, S.D. Pan, R.Y. Xiao, C.Y. Dong, M.C. Jin, Rapid decolorization of dye orange G by microwave enhanced fenton-like reaction with delafossite-type CuFeO2. Sci. Total Environ. 580, 966–973 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    A. Pabst, Notes on the structure of delafossite. Am. Mineral. 31, 539–546 (1946)Google Scholar
  11. 11.
    E. Mugnier, A. Barnabe, P. Taillhades, Synthesis and characterization of CuFeO2+δ delafossite powders. Solid State Ion. 177, 607–612 (2006)CrossRefGoogle Scholar
  12. 12.
    S. Bassaid, M. Chaib, S. Omeiri, A. Bouguelia, M. Trari, Photocatalytic reduction of cadmium over CuFeO2 synthesized by sol–gel. J. Photochem. Photobiol. A 201, 62–68 (2009)CrossRefGoogle Scholar
  13. 13.
    T.R. Zhao, M. Hasegawa, H. Takei, Crystal growth and characterization of cuprous ferrite (CuFeO2). J. Cryst. Growth 166, 408–413 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    S.H. Song, Q.S. Zhu, L.Q. Weng, V.R. Mudinepalli, A comparative study of dielectric, ferroelectric and magnetic properties of BiFeO3 multiferroic ceramics synthesized by conventional and spark plasma sintering techniques. J. Eur. Ceram. Soc. 35, 131–138 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Pedro-García, F. Sánchez-De Jesús, C.A. Cortés-Escobedo, A. Barba-Pingarrón, A.M. Bolarín-Miró, Mechanically assisted synthesis of multiferroic BiFeO3: effect of synthesis parameters. J. Alloy. Compd. 711, 77–84 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Hasegawa, M.I. Batrashevich, T.R. Zhao, H. Takei, T. Goto, Effects of oxygen nonstoichiometry on the stability of antiferromagnetic phases of CuFeO2+δ single crystals. Phys. Rev. B 63, 184437(1)–184437(5) (2001)ADSCrossRefGoogle Scholar
  17. 17.
    M.H. Whangbo, D. Dai, K.S. Lee, R.K. Kremer, On the conflicting pictures of magnetism for the frustrated triangular lattice antiferromagnet CuFeO2. Chem. Mater. 18, 1268–1274 (2006)CrossRefGoogle Scholar
  18. 18.
    Z.Q. Chen, S. Yamamoto, M. Maekawa, A. Kawasuso, X.L. Yuan, T. Sekiguchi, Postgrowth annealing of defects in ZnO studied by positron annihilation, X-ray diffraction, Rutherford backscattering, cathodoluminescence, and Hall measurements. J. Appl. Phys. 94, 4807–4812 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    W. Deng, X.X. Sun, S.X. Tan, Y.X. Li, D.K. Xiong, Y.Y. Huang, Defects and hyperfine interactions in binary Fe–Al alloys studied by positron annihilation and Mossbauer spectroscopies. Chin. Phys. C 37, 128201(1)–128201(5) (2013)Google Scholar
  20. 20.
    Z.Y. Chen, Z.Q. Chen, D.D. Wang, S.J. Wang, Correlation between interfacial defects and ferromagnetism of BaTiO3 nanocrystals studied by positron annihilation. Appl. Surf. Sci. 258, 19–23 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    H.Y. Dai, T. Li, Z.P. Chen, D.W. Liu, R.Z. Xue, C.Z. Zhao, H.Z. Liu, N.K. Huang, Studies on the structural, electrical and magnetic properties of Ce-doped BiFeO3 ceramics. J. Alloy. Compd. 672, 182–189 (2016)CrossRefGoogle Scholar
  22. 22.
    T.R. Zhao, H. Takei, Study of the oxidation and reduction kinetics of copper iron oxide [CuFeO2] in the Cu–Fe–O system. Mater. Res. Bull. 32, 1377–1393 (1997)CrossRefGoogle Scholar
  23. 23.
    P. Kirkegaard, M. Eldrup, Positronfit extended: a new version of a program for analysing positron lifetime spectra. Comput. Phys. Commun. 7, 401–409 (1974)ADSCrossRefGoogle Scholar
  24. 24.
    A.P. Amrute, Z. Łodziana, C. Mondelli, F. Krumeich, J. Pérez-Ramírez, Solid-state chemistry of cuprous delafossites: synthesis and stability aspects. Chem. Mater. 25, 4423–4435 (2013)CrossRefGoogle Scholar
  25. 25.
    A. Wuttig, J.W. Krizan, J. Gu, J.J. Frick, R.J. Cava, A.B. Bocarsly, The effect of Mg-doping and Cu nonstoichiometry on the photoelectrochemical response of CuFeO2. J. Mater. Chem. A 5, 165–171 (2017)CrossRefGoogle Scholar
  26. 26.
    I. Platzman, R. Brener, H. Haick, R. Tannenbaum, Oxidation of polycrystalline copper thin films at ambient conditions. J. Phys. Chem. C 112, 1101–1108 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Hongaromkij, C. Rudradawong, C. Ruttanapun, Effect of Ga-substitution for Fe sites of delafossite CuFe1−xGaxO2 (x = 0.0, 0.1, 0.3, 0.5) on thermal conductivity. J. Mater. Sci. Mater. Electron. 27, 6438–6444 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Yin, C.K. Wu, Y.B. Lou, C. Burda, J.T. Koberstein, Y.M. Zhu, S. O’Brien, Copper oxide nanocrystals. J. Am. Chem. Soc. 127, 9506–9511 (2005)CrossRefGoogle Scholar
  29. 29.
    J. Dryzek, Positron trapping model in fine grained sample. Acta. Phys. Pol. A. 95, 539–545 (1999)CrossRefGoogle Scholar
  30. 30.
    J.X. Nie, F.X. Xia, R.S. Yu, B.Y. Wang, Z.X. Li, G.R. Chen, A positron annihilation lifetime spectroscopic study of nanocrystals formation in a chalcogenide glass–ceramic. Measurement 44, 298–302 (2011)CrossRefGoogle Scholar
  31. 31.
    H. Klym, A. Ingram, I. Hadzaman, O. Shpotyuk, Evolution of porous structure and free-volume entities in magnesium aluminate spinel ceramics. Ceram. Int. 40, 8561–8567 (2014)CrossRefGoogle Scholar
  32. 32.
    R. Krause-Rehberg, H.S. Leipner, Positron annihilation in semiconductors. Defect studies (Springer, Berlin, 1999), p. 394CrossRefGoogle Scholar
  33. 33.
    K. Filipecka, P. Pawlik, J. Filipecki, The effect of annealing on magnetic properties, phase structure and evolution of free volumes in Pr–Fe–B–W metallic glasses. J. Alloy. Compd. 694, 228–234 (2017)CrossRefGoogle Scholar
  34. 34.
    T. Elkhouni, M. Amami, C.V. Colin, A.B. Salah, Structural and magnetoelectric interactions of (Ca, Mg)-doped polycrystalline multiferroic CuFeO2. Mater. Res. Bull. 53, 151–157 (2014)CrossRefGoogle Scholar
  35. 35.
    T. Nakajima, S. Mitsuda, K. Takahashi, K. Yoshitomi, K. Masuda, C. Kaneko, Y. Honma, S. Kobayashi, H. Kitazawa, M. Kosaka, N. Aso, Y. Uwatoko, N. Terada, S. Wakimoto, M. Takeda, K. Kakurai, Uniaxial-pressure control of magnetic phase transitions in a frustrated magnet CuFe1−xGaxO2 (x = 0, 0.018). J. Phys. Soc. Jpn. 81, 94710(1)–94710(8)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physical Science and TechnologyGuangxi UniversityNanningChina
  2. 2.School of Physics and Electronic EngineeringZhengzhou University of Light IndustryZhengzhouChina

Personalised recommendations