Applied Physics A

, 124:329 | Cite as

Critical and compensation behaviors of an Ising mixed spin-(5/2,3/2) on a nanographene layer

Article

Abstract

We have applied Monte Carlo simulation to study the magnetic behavior of a mixed spins \(S=\pm 5/2,\pm 3/2, \pm 1/2\) and \(\sigma =\pm 3/2,\pm 1/2\) Ising system of a nanographene layer, where the spins S alternate with the spins \(\sigma\) in two interpenetrating sublattices A and B, respectively. The Hamiltonian of the system contains an exchange interaction between nearest neighbors, a longitudinal magnetic field h, and a four-spin interaction \(J_4\). The antiferromagnetic and the ferromagnetic exchange interactions have been investigated. Interesting phenomena have been found. In particular, the system can exhibit a compensation temperature in the presence of h and \(J_4\).

Notes

Acknowledgements

This work has been initiated with the support of URAC: 08 and the Project PPR: (MESRSFC-CNRST).

References

  1. 1.
    V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 11781271 (2011)CrossRefGoogle Scholar
  2. 2.
    K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192200 (2012)CrossRefGoogle Scholar
  3. 3.
    Q. Miao, L. Wang, Z. Liu, B. Wei, F. Xu, W. Fei, Magnetic properties of N-doped graphene with high Curie temperature. Sci. Rep. 6, 21832 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    J. Wei, Z. Zang, Y. Zhang, M. Wang, D. Jihe, X. Tang, Opt. Lett. 42(5), 911–914 (2017)Google Scholar
  5. 5.
    Z. Zang, X. Zeng, M. Wang, W. Hu, C. Liu, X. Tang, Sensors Actuators B Chem. 252 (2017)Google Scholar
  6. 6.
    N. Ota, N. Gorjizadeh, Y. Kawazoe, Asymmetric graphene model applied to graphite-like carbon-based ferromagnetism. J. Magn. Soc. Jpn. 34(5), 573 (2010)CrossRefGoogle Scholar
  7. 7.
    N. Ota, N. Gorjizadehn, Y. Kawazoe, multiple spin state analysis of magnetic nano graphene. J. Magn. Soc. Jpn. 35, 360–365 (2011)CrossRefGoogle Scholar
  8. 8.
    W. Jiang, Y.-N. Wang, A.-B. Guo, Y.-Y. Yang, K.-L. Shi, Magnetization plateaus and the susceptibilities of a nano-graphene sandwich-like structure. Carbon 110, 41 (2016)CrossRefGoogle Scholar
  9. 9.
    W. Wang, Q. Li, D. Lv, R. Liu, Z. Peng, S. Yang, Monte Carlo study of magnetization plateaus in a zigzag graphene nanoribbon structure. Carbon 120, 313 (2017)CrossRefGoogle Scholar
  10. 10.
    X. Luo, W. Wang, D. Chen, X. Si-yuan, Monte Carlo study of internal energy and specific heat of a nano-graphene bilayer in a longitudinal magneticfield. Phys. B 491, 51 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    W. Jiang, Y.Y. Yang, A.B. Guo, Study on magnetic properties of a nano-graphene bilayer. Carbon 95, 190 (2015)CrossRefGoogle Scholar
  12. 12.
    J.D. Alzate-Cardona, D. Sabogal-Suárez, E. Restrepo-Parra, Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer. J. Magn. Magn. Mater. 429, 34 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    T. Zhang, Q. Xue, S. Zhang, M. Dong, Nano Today 7, 180 (2012)Google Scholar
  14. 14.
    E. Cappelli, S. Orlando, M. Servidori, C. Scilletta, Appl. Surf. Sci. 254, 1273 (2007)Google Scholar
  15. 15.
    M. Sherafati, S. Satpathy, Phys. Rev. B 83, 165425 (2011)Google Scholar
  16. 16.
    M. Afshar, H. Doosti, Mod. Phys. Rev. B 29, 1450262 (2015)Google Scholar
  17. 17.
    L. Bahmad, R. Masrour, A. Benyoussef, Nano-graphene magnetic properties: A Monte Carlo study. J. Supercond. Nov. Magn. 25(6), 2015 (2012)CrossRefGoogle Scholar
  18. 18.
    R. Masrour, L. Bahmad, A. Benyoussef, Size effect on magnetic properties of a nano-graphene bilayer structure: A Monte Carlo study. J. Magn. Magn. Mater 324(23), 3991 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    J.D. Alzate-Cardona, D. Sabogal-Suárez, E. Restrepo-Parra, J. Magn. Magn. Mater. 429, 34 (2017)Google Scholar
  20. 20.
    N. Tahiri, A. Jabar, L. Bahmad, Phys. Lett. A 381, 189 (2017)Google Scholar
  21. 21.
    M. Roger, J.M. Delrieu, J.H. Hetherington, Phys. Rev. Lett. 45, 173 (1980)Google Scholar
  22. 22.
    S. Lackova, M.J.T. Horiguchi, Phys. A 339, 416 (2004)Google Scholar
  23. 23.
    M. Azhari, N. Benayad, M. Mouhib, Superlattices Microstruct. 79, 96 (2015)Google Scholar
  24. 24.
    A. Feraoun, M. Kerouad, J. Supercond. Nov. Magn. (2017).  https://doi.org/10.1007/s10948-017-4313-0
  25. 25.
    A. Feraoun, M. Kerouad, Nano-graphene monolayer with higher-order exchange couplings: Monte Carlo study. Phys. Lett. A 382, 116 (2018)ADSCrossRefGoogle Scholar
  26. 26.
    A. Feraoun, M. Kerouad, Appl. Phys. A 123, 771 (2017).  https://doi.org/10.1007/s00339-017-1351-1
  27. 27.
    A. Landesman, J. Phys. (Paris) Colloq. C 6, 1305 (1978)Google Scholar
  28. 28.
    H.L. Scott, Phys. Rev. A 37, 263268 (1988)Google Scholar
  29. 29.
    M. Grimsditch, P. Loubeyre, A. Polian, Phys. Rev. B 33, 71927200 (1986)Google Scholar
  30. 30.
    Z. Onyszkiewicz, Phys. Lett. A. 68, 113 (1978)Google Scholar
  31. 31.
    J.A. Barker, Phys. Rev. Lett. 57, 230 (1986)Google Scholar
  32. 32.
    H.D. Shieh, M.H. Kryder, Magneto-optic recording materials with direct overwrite capability. Appl. Phys. Lett. 49, 473 (1986)ADSCrossRefGoogle Scholar
  33. 33.
    V.S. Leite, M. Godoy, W. Figueiredo, Finite-size effects and compensation temperature of a ferrimagnetic small particle. Phys. Rev. B 71, 094427 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    G.A.N. Connell, Magneto-optical properties of amorphous terbium-iron alloys. J. Appl. Phys. 53, 7759 (1982)ADSCrossRefGoogle Scholar
  35. 35.
    J. Ostorro, M. Escorne, A. Pecheron-Guegan, F. Soulette, H. Le, Gall, Dy3Fe5O12 garnet thin films grown from sputtering of metallic targets. J. Appl. Phys. 75, 6103 (1994)ADSCrossRefGoogle Scholar
  36. 36.
    N. De La Espriella, G.M. Buenda, Magnetic behavior of a mixed Ising 3/2 and 5/2 spin model. J. Phys. Condens. Matter 23, 176003 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    J.A. Reyes, N. De La Espriella, G.M. Buenda, Effects of an external magnetic field on a mixed spin-3/2 and spin-5/2 Ising ferrimagnet: a Monte Carlo study. Phys. Status Solidi (b) 252(10), 226872274 (2015)Google Scholar
  38. 38.
    N. De La Espriella, C. Ortega Lpez, F. Torres Hoyos, Critical and compensation temperatures for the mixed spin-3/2 and spin-5/2 Ising model. Rev. Mex. Fis. 59, 9517101 (2013)Google Scholar
  39. 39.
    H.K. Mohamad, Spin compensation temperatures induced by longitudinal fields in a mixed spin-3/2 and spin-5/2 Ising ferrimagnet. J. Magn. Magn. Mater. 323, 61 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    B. Deviren, M. Keskin, Dynamic phase transitions and compensation temperatures in a mixed spin-3/2 and spin-5/2 Ising system. J. Stat. Phys. 140, 934–947 (2010)Google Scholar
  41. 41.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Physique des Matériaux et Modélisation des Systèmes (LP2MS),Unité Associée au CNRST-URAC: 08, Faculty of SciencesUniversity Moulay IsmailMeknesMorocco

Personalised recommendations