Skip to main content
Log in

Critical and compensation behaviors of an Ising mixed spin-(5/2,3/2) on a nanographene layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have applied Monte Carlo simulation to study the magnetic behavior of a mixed spins \(S=\pm 5/2,\pm 3/2, \pm 1/2\) and \(\sigma =\pm 3/2,\pm 1/2\) Ising system of a nanographene layer, where the spins S alternate with the spins \(\sigma\) in two interpenetrating sublattices A and B, respectively. The Hamiltonian of the system contains an exchange interaction between nearest neighbors, a longitudinal magnetic field h, and a four-spin interaction \(J_4\). The antiferromagnetic and the ferromagnetic exchange interactions have been investigated. Interesting phenomena have been found. In particular, the system can exhibit a compensation temperature in the presence of h and \(J_4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Prog. Mater. Sci. 56, 11781271 (2011)

    Article  Google Scholar 

  2. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192200 (2012)

    Article  Google Scholar 

  3. Q. Miao, L. Wang, Z. Liu, B. Wei, F. Xu, W. Fei, Magnetic properties of N-doped graphene with high Curie temperature. Sci. Rep. 6, 21832 (2016)

    Article  ADS  Google Scholar 

  4. J. Wei, Z. Zang, Y. Zhang, M. Wang, D. Jihe, X. Tang, Opt. Lett. 42(5), 911–914 (2017)

  5. Z. Zang, X. Zeng, M. Wang, W. Hu, C. Liu, X. Tang, Sensors Actuators B Chem. 252 (2017)

  6. N. Ota, N. Gorjizadeh, Y. Kawazoe, Asymmetric graphene model applied to graphite-like carbon-based ferromagnetism. J. Magn. Soc. Jpn. 34(5), 573 (2010)

    Article  Google Scholar 

  7. N. Ota, N. Gorjizadehn, Y. Kawazoe, multiple spin state analysis of magnetic nano graphene. J. Magn. Soc. Jpn. 35, 360–365 (2011)

    Article  Google Scholar 

  8. W. Jiang, Y.-N. Wang, A.-B. Guo, Y.-Y. Yang, K.-L. Shi, Magnetization plateaus and the susceptibilities of a nano-graphene sandwich-like structure. Carbon 110, 41 (2016)

    Article  Google Scholar 

  9. W. Wang, Q. Li, D. Lv, R. Liu, Z. Peng, S. Yang, Monte Carlo study of magnetization plateaus in a zigzag graphene nanoribbon structure. Carbon 120, 313 (2017)

    Article  Google Scholar 

  10. X. Luo, W. Wang, D. Chen, X. Si-yuan, Monte Carlo study of internal energy and specific heat of a nano-graphene bilayer in a longitudinal magneticfield. Phys. B 491, 51 (2016)

    Article  ADS  Google Scholar 

  11. W. Jiang, Y.Y. Yang, A.B. Guo, Study on magnetic properties of a nano-graphene bilayer. Carbon 95, 190 (2015)

    Article  Google Scholar 

  12. J.D. Alzate-Cardona, D. Sabogal-Suárez, E. Restrepo-Parra, Critical and compensation behavior of a mixed spin-3/2 and spin-5/2 Ising ferrimagnetic system in a graphene layer. J. Magn. Magn. Mater. 429, 34 (2017)

    Article  ADS  Google Scholar 

  13. T. Zhang, Q. Xue, S. Zhang, M. Dong, Nano Today 7, 180 (2012)

  14. E. Cappelli, S. Orlando, M. Servidori, C. Scilletta, Appl. Surf. Sci. 254, 1273 (2007)

  15. M. Sherafati, S. Satpathy, Phys. Rev. B 83, 165425 (2011)

  16. M. Afshar, H. Doosti, Mod. Phys. Rev. B 29, 1450262 (2015)

  17. L. Bahmad, R. Masrour, A. Benyoussef, Nano-graphene magnetic properties: A Monte Carlo study. J. Supercond. Nov. Magn. 25(6), 2015 (2012)

    Article  Google Scholar 

  18. R. Masrour, L. Bahmad, A. Benyoussef, Size effect on magnetic properties of a nano-graphene bilayer structure: A Monte Carlo study. J. Magn. Magn. Mater 324(23), 3991 (2012)

    Article  ADS  Google Scholar 

  19. J.D. Alzate-Cardona, D. Sabogal-Suárez, E. Restrepo-Parra, J. Magn. Magn. Mater. 429, 34 (2017)

  20. N. Tahiri, A. Jabar, L. Bahmad, Phys. Lett. A 381, 189 (2017)

  21. M. Roger, J.M. Delrieu, J.H. Hetherington, Phys. Rev. Lett. 45, 173 (1980)

  22. S. Lackova, M.J.T. Horiguchi, Phys. A 339, 416 (2004)

  23. M. Azhari, N. Benayad, M. Mouhib, Superlattices Microstruct. 79, 96 (2015)

  24. A. Feraoun, M. Kerouad, J. Supercond. Nov. Magn. (2017). https://doi.org/10.1007/s10948-017-4313-0

  25. A. Feraoun, M. Kerouad, Nano-graphene monolayer with higher-order exchange couplings: Monte Carlo study. Phys. Lett. A 382, 116 (2018)

    Article  ADS  Google Scholar 

  26. A. Feraoun, M. Kerouad, Appl. Phys. A 123, 771 (2017). https://doi.org/10.1007/s00339-017-1351-1

  27. A. Landesman, J. Phys. (Paris) Colloq. C 6, 1305 (1978)

  28. H.L. Scott, Phys. Rev. A 37, 263268 (1988)

  29. M. Grimsditch, P. Loubeyre, A. Polian, Phys. Rev. B 33, 71927200 (1986)

  30. Z. Onyszkiewicz, Phys. Lett. A. 68, 113 (1978)

  31. J.A. Barker, Phys. Rev. Lett. 57, 230 (1986)

  32. H.D. Shieh, M.H. Kryder, Magneto-optic recording materials with direct overwrite capability. Appl. Phys. Lett. 49, 473 (1986)

    Article  ADS  Google Scholar 

  33. V.S. Leite, M. Godoy, W. Figueiredo, Finite-size effects and compensation temperature of a ferrimagnetic small particle. Phys. Rev. B 71, 094427 (2005)

    Article  ADS  Google Scholar 

  34. G.A.N. Connell, Magneto-optical properties of amorphous terbium-iron alloys. J. Appl. Phys. 53, 7759 (1982)

    Article  ADS  Google Scholar 

  35. J. Ostorro, M. Escorne, A. Pecheron-Guegan, F. Soulette, H. Le, Gall, Dy3Fe5O12 garnet thin films grown from sputtering of metallic targets. J. Appl. Phys. 75, 6103 (1994)

    Article  ADS  Google Scholar 

  36. N. De La Espriella, G.M. Buenda, Magnetic behavior of a mixed Ising 3/2 and 5/2 spin model. J. Phys. Condens. Matter 23, 176003 (2011)

    Article  ADS  Google Scholar 

  37. J.A. Reyes, N. De La Espriella, G.M. Buenda, Effects of an external magnetic field on a mixed spin-3/2 and spin-5/2 Ising ferrimagnet: a Monte Carlo study. Phys. Status Solidi (b) 252(10), 226872274 (2015)

  38. N. De La Espriella, C. Ortega Lpez, F. Torres Hoyos, Critical and compensation temperatures for the mixed spin-3/2 and spin-5/2 Ising model. Rev. Mex. Fis. 59, 9517101 (2013)

  39. H.K. Mohamad, Spin compensation temperatures induced by longitudinal fields in a mixed spin-3/2 and spin-5/2 Ising ferrimagnet. J. Magn. Magn. Mater. 323, 61 (2011)

    Article  ADS  Google Scholar 

  40. B. Deviren, M. Keskin, Dynamic phase transitions and compensation temperatures in a mixed spin-3/2 and spin-5/2 Ising system. J. Stat. Phys. 140, 934–947 (2010)

  41. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

Download references

Acknowledgements

This work has been initiated with the support of URAC: 08 and the Project PPR: (MESRSFC-CNRST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Feraoun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feraoun, A., Amraoui, S. & Kerouad, M. Critical and compensation behaviors of an Ising mixed spin-(5/2,3/2) on a nanographene layer. Appl. Phys. A 124, 329 (2018). https://doi.org/10.1007/s00339-018-1726-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1726-y

Navigation