Applied Physics A

, 124:286 | Cite as

Synthesis and properties of nickel-doped nanocrystalline barium hexaferrite ceramic materials

  • Moaz Waqar
  • Muhammad Asif Rafiq
  • Talha Ahmed Mirza
  • Fazal Ahmad Khalid
  • Abdul Khaliq
  • Muhammad Sabieh Anwar
  • Murtaza Saleem


M-type barium hexaferrite ceramics have emerged as important materials both for technological and commercial applications. However, limited work has been reported regarding the investigation of nanocrystalline Ni-doped barium hexaferrites. In this study, nanocrystalline barium hexaferrite ceramics with the composition BaFe12−xNi x O19 (where x = 0, 0.3 and 0.5) were synthesized by sol–gel method and characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and precision impedance analyzer. All the synthesized samples had single magnetoplumbite phase having space group P63/mmc showing the successful substitution of Ni in BaFe12O19 without the formation of any impurity phase. Average grain size of undoped samples was around 120 nm which increased slightly with the addition of Ni. Saturation magnetization (Ms) and remnant magnetization (Mr) increased with the addition of Ni, however, coercivity (Hc) decreased with the increase in Ni from x = 0 to x = 0.5. Real and imaginary parts of permittivity decreased with the increasing frequency and increased with Ni content. Dielectric loss and conductivity showed slight variation with the increase in Ni concentration.


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    T. Kaur et al., Effect on dielectric, magnetic, optical and structural properties of Nd–Co substituted barium hexaferrite nanoparticles. Appl. Phys. A 119(4), 1531–1540 (2015)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Li et al., Phase formation, magnetic properties and Raman spectra of Co–Ti co-substitution M-type barium ferrites. Appl. Phys. A 119(2), 525–532 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    V.N. Dhage et al., Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys. B 406(4), 789–793 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    Chavan, V.C., et al., Transformation of hexagonal to mixed spinel crystal structure and magnetic properties of Co2+ substituted BaFe12O19. J. Magnet. Magnet. Mater.. 398, 32–37 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    V.N. Dhage et al., Influence of chromium substitution on structural and magnetic properties of BaFe12O19 powder prepared by sol–gel auto combustion method. J. Alloy. Compd. 509(12), 4394–4398 (2011)CrossRefGoogle Scholar
  6. 6.
    Z. Zhang et al., Effect of Nd–Co substitution on magnetic and microwave absorption properties of SrFe 12O19 hexaferrites. J. Alloy. Compd. 525, 114–119 (2012)CrossRefGoogle Scholar
  7. 7.
    X. Niu et al., Effects of presintering temperature on structural and magnetic properties of BaMg1.8Cu0.2Fe16O27 hexagonal ferrites. Optics 126(24), 5513–5516 (2015)ADSGoogle Scholar
  8. 8.
    M.A. Rafiq et al., Effect of Ni2+ substitution on the structural, magnetic, and dielectric properties of barium hexagonal ferrites (BaFe 12 O 19). J. Electron. Mater. 46(1), 241–246 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    Z. Mosleh et al., Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    L. Wang et al., XAFS and XPS studies on site occupation of Sm3+ ions in Sm doped M-type BaFe12O19. J. Magn. Magn. Mater. 377, 362–367 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    M.H. Shams et al., Effect of Mg2+ and Ti4+ dopants on the structural, magnetic and high-frequency ferromagnetic properties of barium hexaferrite. J. Magn. Magn. Mater. 399, 10–18 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    G.M. Rai, M. Iqbal, K. Kubra, Effect of Ho3+ substitutions on the structural and magnetic properties of BaFe12O19 hexaferrites. J. Alloy. Compd. 495(1), 229–233 (2010)CrossRefGoogle Scholar
  13. 13.
    R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater Sci. 57(7), 1191–1334 (2012)CrossRefGoogle Scholar
  14. 14.
    J. Smit, H.P.J. Wijn, Ferrites. Philips Technical Library, Eindhoven, 1959Google Scholar
  15. 15.
    M.J. Iqbal, S. Farooq, Suitability of Sr0.5Ba0.5–xCexFe12–yNiyO19 co-precipitated nanomaterials for inductor applications. J. Alloys Compd. 493(1–2), 595–600 (2010)CrossRefGoogle Scholar
  16. 16.
    C.-J. Li, B. Wang, J.-N. Wang, Magnetic and microwave absorbing properties of electrospun Ba(1– x)LaxFe12O19 nanofibers. J. Magn. Magn. Mater. 324(7), 1305–1311 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    I. Bsoul, S. Mahmood, Magnetic and structural properties of BaFe12–xGaxO19 nanoparticles. J. Alloy. Compd. 489(1), 110–114 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Singhal, A. Garg, K. Chandra, Evolution of the magnetic properties during the thermal treatment of nanosize BaMFe11O19 (M = Fe, Co, Ni and Al) obtained through aerosol route. J. Magn. Magn. Mater. 285(1), 193–198 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    V. Sankaranarayanan, D. Khan, Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method. J. Magnet. Magnet. Mater. 153(3), 337–346 (1996)ADSCrossRefGoogle Scholar
  20. 20.
    X. Liu et al., An ultrafine barium ferrite powder of high coercivity from water-in-oil microemulsion. J. Magn. Magn. Mater. 184(3), 344–354 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    L. Rezlescu et al., Fine barium hexaferrite powder prepared by the crystallisation of glass. J. Magn. Magn. Mater. 193(1), 288–290 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    A. Ataie, S. Heshmati-Manesh, Synthesis of ultra-fine particles of strontium hexaferrite by a modified co-precipitation method. J. Eur. Ceram. Soc. 21(10), 1951–1955 (2001)CrossRefGoogle Scholar
  23. 23.
    M. Iqbal, A. Mir, S. Alam, Synthesis and characterizations of nano-sized barium hexa ferrites using sol-gel methods. une 13, 15 (2016)Google Scholar
  24. 24.
    A. Mali, A. Ataie, Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol–gel combustion route. Scripta Mater. 53(9), 1065–1070 (2005)CrossRefGoogle Scholar
  25. 25.
    D. Chen et al., Curie temperature and magnetic properties of aluminum doped barium ferrite particles prepared by ball mill method. J. Magn. Magn. Mater. 395, 350–353 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    H. Sözeri et al., Magnetic, dielectric and microwave properties of M–Ti substituted barium hexaferrites (M = Mn2+, Co2+, Cu2+, Ni2+, Zn2+). Ceram. Int. 40(6), 8645–8657 (2014)CrossRefGoogle Scholar
  27. 27.
    M.V. Rane et al., Magnetic properties of NiZr substituted barium ferrite. J. Magn. Magn. Mater. 195(2), L256–L260 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    D. Mishra et al., Studies on characterization, microstructures and magnetic properties of nano-size barium hexa-ferrite prepared through a hydrothermal precipitation–calcination route. Mater. Chem. Phys. 86(1), 132–136 (2004)CrossRefGoogle Scholar
  29. 29.
    L. Junliang et al., Synthesis and magnetic properties of quasi-single domain M-type barium hexaferrite powders via sol–gel auto-combustion: Effects of pH and the ratio of citric acid to metal ions (CA/M). J. Alloy. Compd. 479(1), 863–869 (2009)CrossRefGoogle Scholar
  30. 30.
    A. Gonzalez-Angeles et al., Magnetic studies of NiSn-substituted barium hexaferrites processed by attrition milling. J. Magn. Magn. Mater. 270(1), 77–83 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    P. Meng et al., Tunable complex permeability and enhanced microwave absorption properties of BaNixCo1– xTiFe10O19. J. Alloy. Compd. 628, 75–80 (2015)CrossRefGoogle Scholar
  32. 32.
    D. Vinnik et al., Growth, structural and magnetic characterization of Co-and Ni-substituted barium hexaferrite single crystals. J. Alloy. Compd. 628, 480–484 (2015)CrossRefGoogle Scholar
  33. 33.
    Q.K. Muhammad et al., Structural, dielectric, and impedance study of ZnO-doped barium zirconium titanate (BZT) ceramics. J. Mater. Sci. 1–11 (2016)Google Scholar
  34. 34.
    A. Kamal et al., Structural and impedance spectroscopic studies of CuO-doped (K0.5Na0.5Nb0.995Mn0.005O3) lead-free piezoelectric ceramics. Appl. Phys. A 122, 1037 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32(5), 751–767 (1976)ADSCrossRefGoogle Scholar
  36. 36.
    P.P. Naik et al., Influence of rare earth (Nd+3) doping on structural and magnetic properties of nanocrystalline manganese-zinc ferrite. Mater. Chem. Phys. (2017)Google Scholar
  37. 37.
    R.S. Alam et al., Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    M. Rasly, M.M. Rashad, Structural and magnetic properties of Sn–Zn doped BaCoZ-type hexaferrite powders prepared by citrate precursor method. J. Magn. Magn. Mater. 337–338, 58–64 (2013)CrossRefGoogle Scholar
  39. 39.
    I. Coondoo et al., Structural, dielectric and impedance spectroscopy studies in (Bi0.90R0.10)Fe0.95Sc0.05O3. [R = La, Nd] ceramics. Ceram. Int. 40(7), 9895–9902 (2014)CrossRefGoogle Scholar
  40. 40.
    M.V. Rane et al., Mössbauer and FT-IR studies on non-stoichiometric barium hexaferrites. J. Magn. Magn. Mater. 192(2), 288–296 (1999)ADSCrossRefGoogle Scholar
  41. 41.
    A.K. Singh et al., Dielectric properties of Mn-substituted Ni–Zn ferrites. J. Appl. Phys. 91(10), 6626–6629 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium-calcium-zirconium-titanium oxide ceramics. Ceram. Int. 41(9), 11436–11444 (2015)CrossRefGoogle Scholar
  43. 43.
    I. Soibam, S. Phanjoubam, L. Radhapiyari, Dielectric properties of Ni substituted Li–Zn ferrites. Phys. B 405(9), 2181–2184 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    M.A. Rafiq et al., Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics. Phys. Chem. Chem. Phys. 17(37), 24403–24411 (2015)CrossRefGoogle Scholar
  45. 45.
    M.A. Rafiq et al., Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: a comparison study. Cryst. Growth Des. 15(3), 1289–1294 (2015)MathSciNetCrossRefGoogle Scholar
  46. 46.
    V.V. Soman et al., Effect of substitution of Zn-Ti on magnetic and dielectric properties of BaFe12O19. Phys. Proc. 54, 30–37 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    S. El-Sayed et al., Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Phys. B 426, 137–143 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    V.V. Soman, V. Nanoti, D. Kulkarni, Dielectric and magnetic properties of Mg–Ti substituted barium hexaferrite. Ceram. Int. 39(5), 5713–5723 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Moaz Waqar
    • 1
  • Muhammad Asif Rafiq
    • 1
  • Talha Ahmed Mirza
    • 2
  • Fazal Ahmad Khalid
    • 1
  • Abdul Khaliq
    • 3
  • Muhammad Sabieh Anwar
    • 4
  • Murtaza Saleem
    • 4
  1. 1.Department of Metallurgical and Materials EngineeringUniversity of Engineering and TechnologyLahorePakistan
  2. 2.Department of Materials Science and EngineeringFriedrich-Alexander UniversitatNurnbergGermany
  3. 3.Faculty of Science, Engineering and TechnologySwinburne University of TechnologyMelbourneAustralia
  4. 4.Department of Physics, Syed Babar Ali School of Science and EngineeringLahore University of Management Sciences (LUMS)LahorePakistan

Personalised recommendations