Applied Physics A

, 124:294 | Cite as

Angle-dependent tribological properties of AlCrN coatings with microtextures induced by nanosecond laser under dry friction

  • Youqiang Xing
  • Jianxin Deng
  • Peng Gao
  • Juntao Gao
  • Ze Wu


Microtextures with different groove inclinations are fabricated on the AlCrN-coated surface by a nanosecond laser, and the tribological properties of the textured AlCrN samples sliding against AISI 1045 steel balls are investigated by reciprocating sliding friction tests under dry conditions. Results show that the microtextures can effectively improve the tribological properties of the AlCrN surface compared with the smooth surface. Meanwhile, the angle between the groove inclination and sliding direction has an important influence on the friction and wear properties. The textured sample with the small groove inclination may be beneficial to reducing the friction and adhesions, and the TC-0° sample exhibits the lowest friction coefficient and adhesions of the worn surface. The wear volume of the ball sliding against the TC-0° sample is smaller compared with the UTC sample and the sliding against the TC-45° and TC-90° samples is larger compared with the UTC sample. Furthermore, the mechanisms of the microtextures are discussed.



This work is supported by the National Natural Science Foundation of China (51675311, 51405080), the Natural Science Foundation of Jiangsu Province (BK20170676), and the Development Plan of Science and Technology of Shandong Province (2017GGX30115).


  1. 1.
    S.C. Cha, A. Erdemir, Coating Technology for Vehicle Applications (Springer, Switzerland, 2015)CrossRefGoogle Scholar
  2. 2.
    W. Kalss, A. Reiter, V. Derflinger, C. Gey, J.L. Endrino, Modern coatings in high performance cutting applications. Int. J. Refract. Met. Hard Mater. 24(5), 399–404 (2006)CrossRefGoogle Scholar
  3. 3.
    Y.J. Lin, A. Agrawal, Y. Fang, Wear progressions and tool life enhancement with AlCrN coated inserts in high-speed dry and wet steel lathing. Wear 264(3), 226–234 (2008)CrossRefGoogle Scholar
  4. 4.
    J.L. Endrino, G.S. Fox-Rabinovich, C. Gey, Hard AlTiN, AlCrN PVD coatings for machining of austenitic stainless steel. Surf. Coat. Technol. 200(24), 6840–6845 (2006)CrossRefGoogle Scholar
  5. 5.
    K.D. Zhang, J.X. Deng, J.L. Sun, C. Jiang, Y.Y. Liu, S. Chen, Effect of micro/nano-scale textures on anti-adhesive wear properties of WC/Co-based TiAlN coated tools in AISI 316 austenitic stainless steel cutting. Appl. Surf. Sci. 355, 602–614 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    T. Obikawa, A. Kamio, H. Takaoka, A. Osada, Micro-texture at the coated tool face for high performance cutting. Int. J. Mach. Tools Manuf. 51, 966–972 (2011)CrossRefGoogle Scholar
  7. 7.
    P.W. Shum, Z.F. Zhou, K.Y. Li, Friction and wear reduction of hard TiAlSiN coatings by an integrated approach of laser surface texturing and high-energy ion implantation. Surf. Coat. Technol. 259, 136–140 (2014)CrossRefGoogle Scholar
  8. 8.
    A.A. Voevodin, J.S. Zabinski, Laser surface texturing for adaptive solid lubrication. Wear 261, 1285–1292 (2006)CrossRefGoogle Scholar
  9. 9.
    G. Dumitru, V. Romano, Y. Gerbig, H. Haefke, Femtosecond laser processing of nitride-based thin films to improve their tribological performance. Appl. Phys. A 80(2), 283–287 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    M. Nakano, A. Korenaga, A. Korenaga, K. Miyake, T. Murakami, Y. Ando, H. Usami, S. Sasaki, Applying micro-texture to cast iron surfaces to reduce the friction coefficient under lubricated conditions. Tribol. Lett. 28, 131–137 (2007)CrossRefGoogle Scholar
  11. 11.
    I. Etsion, State of the art in laser surface texturing. J. Tribol. 127(1), 248 (2005)CrossRefGoogle Scholar
  12. 12.
    W. Grabon, P. Pawlus, S. Wos, W. Koszela, M. Wieczorowski, Effects of honed cylinder liner surface texture on tribological properties of piston ring-liner assembly in short time tests. Tribol. Int. 113, 137–148 (2017)CrossRefGoogle Scholar
  13. 13.
    L. Sabri, M.E.I. Mansori, Process variability in honing of cylinder liner with vitrified bonded diamond tools. Surf. Coat. Technol. 204, 1046–1050 (2009)CrossRefGoogle Scholar
  14. 14.
    Z. Wu, J.X. Deng, Y.Q. Xing, H.W. Cheng, J. Zhao, Effect of surface texturing on friction properties of WC/Co cemented carbide. Mater. Des. 41, 142–149 (2012)CrossRefGoogle Scholar
  15. 15.
    Y.Q. Xing, J.X. Deng, X.S. Wang, K. Ehmann, J. Cao, Experimental assessment of laser textured cutting tools in dry cutting of aluminum alloys. J. Manuf. Sci. Eng. 138(7), 071006 (2016)CrossRefGoogle Scholar
  16. 16.
    U. Pettersson, S. Jacobson, Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribol. Lett. 17(3), 553–559 (2004)CrossRefGoogle Scholar
  17. 17.
    H. Hata, T. Nakahara, H. Aoki, Measurement of friction in lightly load hydrodynamic sliders with striated roughness. In Proceedings of the winter annual meeting of the American Society of Mechanical Engineers, Chicago, Illinois, 1980, pp. 75–92Google Scholar
  18. 18.
    A. Rosenkranz, L. Reinert, C. Gachot, F. Mücklich, Alignment and wear debris effects between laser-patterned steel surfaces under dry sliding conditions. Wear 318, 49–61 (2014)CrossRefGoogle Scholar
  19. 19.
    Z. Wang, Y.-B. Li, F. Bai, C.-W. Wang, Q.-Z. Zhao, Angle-dependent lubricated tribological properties of stainless steel by femtosecond laser surface texturing. Opt. Laser Technol. 81, 60–66 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    S.H. Yuan, W. Huang, X.L. Wang, Orientation effects of micro-grooves on sliding surfaces. Tribol. Int. 44, 1047–1054 (2011)CrossRefGoogle Scholar
  21. 21.
    H.L. Costa, I.M. Hutchings, Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol. Int. 40, 1227–1238 (2007)CrossRefGoogle Scholar
  22. 22.
    S. Mezghani, I. Demirci, H. Zahouani, M.E.I. Mansori, The effect of groove texture patterns on piston-ring pack friction. Precis. Eng. 36(2), 210–217 (2012)CrossRefGoogle Scholar
  23. 23.
    M.-S. Suh, Y.-H. Chae, S.-S. Kim, T. Hinoki, A. Kohyama, Effect of geometrical parameters in micro-grooved crosshatch pattern under lubricated sliding friction. Tribol. Int. 43, 1508–1517 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Dunn, K.L. Wlodarczyk, J.V. Carstensen, E.B. Hansen, J. Gabzdyl, P.M. Harrison, J.D. Shepharda, D.P. Hand, Laser surface texturing for high friction contacts. Appl. Surf. Sci. 357, 2313–2319 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    Y.Q. Xing, J.X. Deng, Z. Wu, F.F. Wu, High friction and low wear properties of laser-textured ceramic surface under dry friction. Opt. Laser Technol. 93, 24–32 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    A. Dunn, J.V. Carstensen, K.L. Wlodarczyk, E.B. Hansen, J. Gabzdyl, P.M. Harrison, J.D. Shephard, D.P. Hand, Nanosecond laser texturing for high friction applications. Opt. Lasers Eng. 62, 9–16 (2014)CrossRefGoogle Scholar
  27. 27.
    Z. Wang, Q.Z. Zhao, C.W. Wang, Y. Zhang, Modulation of dry tribological property of stainless steel by femtosecond laser surface texturing. Appl. Phys. A 119, 1155–1163 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Z. Wu, J.X. Deng, H. Zhan, Y.S. Lian, J. Zhao, Tribological behavior of textured cemented carbide filled with solid lubricants in dry sliding with titanium alloys. Wear 292, 135–143 (2012)CrossRefGoogle Scholar
  29. 29.
    Y.Q. Xing, J.X. Deng, X.T. Feng, S. Yu, Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction. Mater. Des. 52, 234–245 (2013)CrossRefGoogle Scholar
  30. 30.
    V. Franzen, J. Witulski, A. Brosius, M. Trompeter, A.E. Tekkaya, Textured surfaces for deep drawing tools by rolling. Int. J. Mach. Tools Manuf. 50, 969–976 (2010)CrossRefGoogle Scholar
  31. 31.
    Y.Q. Xing, J.X. Deng, Z. Wu, H.W. Cheng, Effect of regular surface textures generated by laser on tribological behavior of Si3N4/TiC ceramic. Appl. Surf. Sci. 265, 823–832 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    A. Kovalchenko, O. Ajayi, A. Erdemir, G. Fenske, Friction and wear behavior of laser textured surface under lubricated initial point contact. Wear 271(9), 1719–1725 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Youqiang Xing
    • 1
  • Jianxin Deng
    • 2
  • Peng Gao
    • 2
  • Juntao Gao
    • 1
  • Ze Wu
    • 1
  1. 1.School of Mechanical EngineeringSoutheast UniversityNanjingPeople’s Republic of China
  2. 2.Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical EngineeringShandong UniversityJinanPeople’s Republic of China

Personalised recommendations