Applied Physics A

, 124:291 | Cite as

Temperature-dependent electrical characteristics and carrier transport mechanism of p-Cu2ZnSnS4/n-GaN heterojunctions

  • Varra Niteesh Reddy
  • M. Siva Pratap Reddy
  • K. R. Gunasekhar
  • Jung-Hee Lee


This work explores the temperature-dependent electrical characteristics and carrier transport mechanism of Au/p-Cu2ZnSnS4/n-type GaN heterojunction (HJ) diodes with a CZTS interlayer. The electrical characteristics were examined by current–voltage–temperature, turn-on voltage–temperature and series resistance–temperature in the high-temperature range of 300–420 K. It is observed that an exponential decrease in the series resistance (RS) and increase in the ideality factor (n) and barrier height (ϕb) with increase in temperature. The thermal coefficient (Kj) is determined to be − 1.3 mV K−1 at ≥ 300 K. The effective ϕb is determined to be 1.21 eV. This obtained barrier height is consistent with the theoretical one. The characteristic temperature (T0) resulting from the Cheung’s functions [dV/d(lnI) vs. I and H(I) vs. I], is seen that there is good agreement between the T0 values from both Cheung’s functions. The relevant carrier transport mechanisms of Au/p-CZTS/n-type GaN HJ are explained based on the thermally decreased energy band gap of n-type GaN layers, thermally activated deep donors and increased further activated shallow donors.



This study was partially supported by the BK21 Plus funded by the Ministry of Education (21A20131600011).


  1. 1.
    M.S.P. Reddy, H. Park, S.-M. Kim, S.-H. Jang, J.-S. Jang, J. Mater. Chem. C 3, 8873 (2015)CrossRefGoogle Scholar
  2. 2.
    T.J. Slight, A. Yadav, O. Odedina, W. Meredith, K.E. Docherty, E. Rafailov, A.E. Kelly, IEEE Photon. Technol. Lett. 29, 2020 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    M.S.P. Reddy, B.-J. Kim, J.-S. Jang, Opt. Express 22, 908 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    D. Mistele, T. Rotter, K.S. Rover, S. Paprotta, M. Seyboth, V. Schwegler, F. Edler, H. Klausing, O.K. Semchinova, J. Stemmer, J. Aderhold, J. Graul, Mater. Sci. Eng. B 93, 107 (2002)CrossRefGoogle Scholar
  5. 5.
    J.D. Brown, R. Borgers, E. Pinner, A. Vescan, S. Sighal, R. Therrien, Solid-State Electron. 46, 1535 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    J. Moon, M. Micovic, A. Kurdoghlian, P. Janke, P. Hashimto, W. Wong, L. Mc Cray, C. Nguyen, IEEE Electron Device Lett. 23, 637 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    Y.-J. Lin, C.-H. Ruan, Y.-J. Chu, C.J. Liu, F.-H. Lin, Appl. Phys. A 121, 103 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    R. Touati, I. Trabelsi, M.B. Rabeh, M. Kanzari, J. Mater. Sci. Mater. Electron. 28, 5315 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Danilson, E. Kask, N. Pokharel, M. Grossberg, M.K. Kuusik, T. Verema, J. Krustok, Thin Solid Films 582, 162 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    V. Kosyak, M.A. Karmarkar, M.A. Scarpulla, Appl. Phys. Lett. 100, 263903 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    G. Chen, C. Yuan, J. Liu, Z. Huang, S. Chen, W. Liu, G. Jiang, C. Zhu, J. Power Sources 276, 145 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    H.-S. Duan, W. Yang, B. Bob, C.-J. Hsu, B. Lei, Y. Yang, Adv. Funct. Mater. 23, 1466 (2013)CrossRefGoogle Scholar
  13. 13.
    A.V. Moholkar, S.S. Shinde, A.R. Babar, K.-U. Sim, Y.-B. Kwon, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, Sol. Energy 85, 1354 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    V.R. Reddy, V. Janardhanam, J. Won, C.-J. Choi, J. Colloid Interface Sci. 499, 180 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Xi, E.F. Schubert, Appl. Phys. Lett. 85, 2163 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    M.S.P. Reddy, A. Bengi, V.R. Reddy, J.-S. Jang, Superlattices Microstruct. 86, 157 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 1990)Google Scholar
  18. 18.
    E.H. Rhoderick, R.H. Williams, Metal Semiconductor Contacts (Clarendon, Oxford, 1988)Google Scholar
  19. 19.
    M.S.P. Reddy, J.-H. Lee, J.-S. Jang, Electron. Mater. Lett. 10, 411 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    H.-W. Hubers, H.P. Roser, J. Appl. Phys. 84, 5326 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    J. Neugebauer, C.G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996)ADSCrossRefGoogle Scholar
  23. 23.
    T. Mattila, R.M. Nieminen, Phys. Rev. B 55, 9571 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    L. Stafford, L.F. Voss, S.J. Pearton, J.-J. Chen, F. Ren, Appl. Phys. Lett. 89, 132110 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 2007)Google Scholar
  26. 26.
    J. Wu, J. Appl. Phys. Lett. 106, 011101 (2009)ADSGoogle Scholar
  27. 27.
    R.B. Northrop, Introduction to Instrumentation and Measurements (CRC Press, Boca Raton, 2014)Google Scholar
  28. 28.
    R.F. Davis, M.S. Shur, H.B. Dietrich, GaN-Based Materials and Devices: Growth, Fabrication, Characterization and Performance (World Scientific, Hackensack, 2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and CommunicationDayananda Sagar College of EngineeringBangaloreIndia
  2. 2.School of Electronics EngineeringKyungpook National UniversityDaeguSouth Korea
  3. 3.Department of Instrumentation and Applied PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations