Advertisement

Applied Physics A

, 124:296 | Cite as

Influences of ultrathin amorphous buffer layers on GaAs/Si grown by metal–organic chemical vapor deposition

  • Haiyang Hu
  • Jun Wang
  • Zhuo Cheng
  • Zeyuan Yang
  • Haiying Yin
  • Yibing Fan
  • Xing Ma
  • Yongqing Huang
  • Xiaomin Ren
Article
  • 57 Downloads

Abstract

In this work, a technique for the growth of GaAs epilayers on Si, combining an ultrathin amorphous Si buffer layer and a three-step growth method, has been developed to achieve high crystalline quality for monolithic integration. The influences of the combined technique for the crystalline quality of GaAs on Si are researched in this article. The crystalline quality of GaAs epilayer on Si with the combined technique is investigated by scanning electron microscopy, double crystal X-ray diffraction (DCXRD), photoluminescence, and transmission electron microscopy measurements. By means of this technique, a 1.8-µm-thick high-quality GaAs/Si epilayer was grown by metal–organic chemical vapor deposition. The full-width at half-maximum of the DCXRD rocking curve in the (400) reflection obtained from the GaAs/Si epilayers is about 163 arcsec. Compared with only using three-step growth method, the current technique reduces etch pit density from 3 × 106 cm−2 to 1.5 × 105 cm−2. The results demonstrate that the combined technique is an effective approach for reducing dislocation density in GaAs epilayers on Si.

Notes

Acknowledgements

This work was supported by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications) under Grant IPOC2016ZT01, the National Natural Science Foundation of China under Grant No. 61674020, 61574019, and 61474008, the International Science & Technology Cooperation Program of China under Grant 2011DFR11010, the 111Project of China under Grant B07005.

References

  1. 1.
    R. Cipro, T. Baron, M. Martin, J. Moeyaert, S. David, V. Gorbenko, F. Bassani, Y. Bogumilowicz, J.P. Barnes, N. Rochat, V. Loup, C. Vizioz, N. Allouti, N. Chauvin, X.Y. Bao, Z. Ye, J.B. Pin, E. Sanchez, Appl. Phys. Lett. 104, 262103 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    M. Takahasi, Y. Nakata, H. Suzuki, K. Ikeda, M. Kozu, W. Hua, Y. Ohshita, J. Cryst. Growth 378, 34 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    Y.B. Bolkhovityanov, O.P. Pchelyakov, Phys. Usp. 51, 437 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    K.K. Linder, J. Phillips, O. Qasaimeh, X.F. Liu, S. Krishna, P. Bhattacharya, J.C. Jiang, Appl. Phys. Lett. 74, 1355 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    M. Yamaguchi, C. Amano, J. Appl. Phys. 58, 3601 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    S.F. Fang, K. Adomi, S. Iyer, H. Morkoç, H. Zabel, C. Choi, N. Otsuka, J. Appl. Phys. 68, R31 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    M. Akiyama, Y. Kawarada, K. Kaminishi, Jpn. J. Appl. Phys. 23, L843 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    M. Tachikawa, H. Mori, M. Sugo, Y. Itoh, Jpn. J. Appl. Phys. 32, L1252 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    M. Akiyama, Y. Kawarada, T. Ueda, S. Nishi, K. Kaminishi, J. Cryst. Growth 77, 490 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    J.W. Lee, H. Shichijo, H.L. Tsai, R.J. Matyi, Appl. Phys. Lett. 50, 31 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    M. Yamaguchi, M. Tachikawa, Y. Itoh, M. Sugo, S. Kondo, J. Appl. Phys. 68, 4518 (1990)ADSCrossRefGoogle Scholar
  12. 12.
    N.A. El-Masry, J.C. Tarn, N.H. Karam, J. Appl. Phys. 64, 3672 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    R. Fischer, H. Morkoç, D.A. Newmann, H. Zabel, C. Choi, N. Otsuka, M. Longerbone, L.P. Erickson, J. Appl. Phys. 60, 1640 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    T. Soga, S. Hattori, S. Sakai, M. Umeno, J. Cryst. Growth 77, 498 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    T. Soga, T. Imori, M. Umeno, S. Hatori, Jpn. J. Appl. Phys. 26, L536 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    G. Balakrishnan, S. Huang, L.R. Dawson, Y.-C. Xin, P. Conlin, D.L. Huffaker, Appl. Phys. Lett. 86, 034105 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S.N. Elliott, A. Sobiesierski, A.J. Seeds, I. Ross, P.M. Smowton, H. Liu, Nat. Photonics 10, 307 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sana, K. Chocho, Appl. Phys. Lett. 72, 211 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    Y. He, J. Wang, H. Hu, Q. Wang, Y. Huang, X. Ren, Appl. Phys. Lett. 106, 202105 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    S.W. Kim, Y.D. Cho, C.S. Shin, W.K. Park, D.H. Kim, D.H. Ko, J. Cryst. Growth 401, 319 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    H.Y. Yu, S.I. Cheng, J.H. Park, A.K. Okyay, M.C. Onbasli, B. Ercan, Y. Nishi, K.C. Saraswat, Appl. Phys. Lett. 97, 063503 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    S. Nozaki, N. Noto, T. Egawa, A.T. Wu, T. Soga, T. Jimbo, M. Umeno, Jpn. J. Appl. Phys. 29, 138 (1990)ADSCrossRefGoogle Scholar
  23. 23.
    Y. Wang, Q. Wang, Z. Jia, X. Li, C. Deng, Y. Yan, X. Ren, J. Vac. Sci. Technol. B 31, 051211 (2013)CrossRefGoogle Scholar
  24. 24.
    J. Yang, P. Bhattacharya, Z. Mi, IEEE Trans. Electron Devices 54, 2849 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    H. Hu, J. Wang, Y. He, K. Liu, Y. Liu, Q. Wang, X. Duan, Y. Huang, X. Ren, Appl. Phys. A 122, 588 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    M. Ishida, H. Ohyama, S. Sasaki, Y. Yasuda, T. Nishinaga, T. Nakamura, Jpn. J. Appl. Phys. 20, L541 (1981)ADSCrossRefGoogle Scholar
  27. 27.
    W.Y. Uen, Z.Y. Li, Y.C. Huang, M.C. Chen, T.N. Yang, S.M. Lan, C.H. Wu, H.F. Hong, G.C. Chi, J. Cryst. Growth 295, 103 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    J. Wang, H. Hu, Y. He, C. Deng, Q. Wang, X. Duan, Y. Huang, X. Ren, Chin. Phys. Lett. 32, 088101 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    K. Ismail, F. Legoues, N.H. Karam, J. Carter, H.I. Smith, Appl. Phys. Lett. 59, 2418 (1991)ADSCrossRefGoogle Scholar
  30. 30.
    M.S. Hao, J.W. Liang, X.J. Jin, Y.T. Wamg, L.S. Deng, Z.B. Xiao, L.X. Zheng, X.W. Hu, Chin. Phys. Lett. 13, 42 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    J.E. Ayers, J. Cryst. Growth 135, 71 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    P. Zhang, Y. Song, J. Tian, X. Zhang, Z. Zhang, J. Appl. Phys. 105, 053103 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    W. Stolz, F.E.G. Guimaraes, K. Ploog, J. Appl. Phys. 63, 492 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    Y.L. He, X.N. Liu, Acta Electron Sin 4, 71 (1982)Google Scholar
  35. 35.
    J.A. Reimer, R.W. Vaughan, J.C. Knights, Solid State Commun. 37, 161 (1981)ADSCrossRefGoogle Scholar
  36. 36.
    M. Conradi, R. Norberg, Phys. Rev. B 24, 2285 (1981)ADSCrossRefGoogle Scholar
  37. 37.
    D.E. Polk, J. Non-Cryst. Solids 5, 365 (1971)ADSCrossRefGoogle Scholar
  38. 38.
    Z. Iqbal, S. Veprek, A.P. Webb, P. Capezzuto, Solid State Commun. 37, 993 (1981)ADSCrossRefGoogle Scholar
  39. 39.
    J. Soutadé, C. Fontaine, A. Muñoz-Yagüe, Appl. Phys. Lett. 59, 1764 (1991)ADSCrossRefGoogle Scholar
  40. 40.
    S. Nishi, H. Inomata, M. Akiyama, K. Kaminishi, Jpn. J. Appl. Phys. 24, L391 (1985)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Haiyang Hu
    • 1
  • Jun Wang
    • 1
    • 2
  • Zhuo Cheng
    • 1
  • Zeyuan Yang
    • 1
  • Haiying Yin
    • 1
  • Yibing Fan
    • 1
  • Xing Ma
    • 1
  • Yongqing Huang
    • 1
  • Xiaomin Ren
    • 1
  1. 1.State Key Laboratory of Information Photonics and Optical CommunicationsBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Department of Electronic and Electrical EngineeringUniversity College LondonLondonUK

Personalised recommendations