Advertisement

Applied Physics A

, 124:300 | Cite as

Design and analysis of gradient index metamaterial-based cloak with wide bandwidth and physically realizable material parameters

  • Mahesh Singh Bisht
  • Archana Rajput
  • Kumar Vaibhav Srivastava
Article

Abstract

A cloak based on gradient index metamaterial (GIM) is proposed. Here, the GIM is used, for conversion of propagating waves into surface waves and vice versa, to get the cloaking effect. The cloak is made of metamaterial consisting of four supercells with each supercell possessing the linear spatial variation of permittivity and permeability. The spatial variation of material parameters in supercells allows the conversion of propagating waves into surface waves and vice versa, hence results in reduction of electromagnetic signature of the object. To facilitate the practical implementation of the cloak, continuous spatial variation of permittivity and/or permeability, in each supercell, is discretized into seven segments and it is shown that there is not much deviation in cloaking performance of discretized cloak as compared to its continuous counterpart. The crucial advantage, of the proposed cloaks, is that the material parameters are isotropic and in physically realizable range. Furthermore, the proposed cloaks have been shown to possess bandwidth of the order of 190% which is a significantly improved performance compared to the recently published literature.

References

  1. 1.
    J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312(5781), 1780–1782 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    U. Leonhardt, Optical conformal mapping. Science 312(5781), 1777–1780 (2006)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    U. Leonhardt, T.G. Philbin, Transformation optics and the geometry of light. Progr. Opt. 53, 69–152 (2009)CrossRefGoogle Scholar
  4. 4.
    H. Chen, Transformation optics in orthogonal coordinates. J. Opt. A: Pure Appl. Opt. 11(7), 075102 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    S.A. Cummer, B.-I. Popa, D. Schurig, D.R. Smith, J. Pendry, Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74(3), 036621 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    D. Schurig, J. Mock, B. Justice, S.A. Cummer, J.B. Pendry, A. Starr, D. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801), 977–980 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    C. Li, F. Li, Two-dimensional electromagnetic cloaks with arbitrary geometries. Opt. Express 16(17), 13414–13420 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Lai, H. Chen, Z.-Q. Zhang, C. Chan, Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Phys. Rev. Lett. 102(9), 093901 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    H. Chen, C.T. Chan, cloaking at a distance from folded geometries in bipolar coordinates. Opt. Lett. 34(17), 2649–2651 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    F.G. Vasquez, G.W. Milton, D. Onofrei, Broadband exterior cloaking. Opt. Express 17(17), 14800–14805 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    R. Dehbashi, M. Shahabadi, External cylindrical invisibility cloaks with small material dynamic range. IEEE Trans. Antennas Propag. 62(4), 2187–2191 (2014)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    P. Vura, A. Rajput, K.V. Srivastava, Composite-shaped external cloaks with homogeneous material properties. IEEE Antennas Wirel. Propag. Lett. 15, 282–285 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    A. Rajput, K.V. Srivastava, Bandwidth enhancement of transformation optics-based cloak with reduced parameters. Appl. Phys. A 120(2), 663–668 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    A. Rajput, K.V. Srivastava, Design of thin simplified cloak with finite and small dynamic range constitutive tensors. Appl. Phys. A 122(3), 230 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    B.-I. Popa, S.A. Cummer, Cloaking with optimized homogeneous anisotropic layers. Phys. Rev. A 79, 023806 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    J. Andkjr, O. Sigmund, Topology optimized low-contrast all-dielectric optical cloak. Appl. Phys. Lett. 98(2), 021112 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    P. Alitalo, F. Bongard, J.-F. Zürcher, J. Mosig, S. Tretyakov, Experimental verification of broadband cloaking using a volumetric cloak composed of periodically stacked cylindrical transmission-line networks. Appl. Phys. Lett. 94(1), 014103 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    P. Alitalo, S.A. Tretyakov, Broadband electromagnetic cloaking realized with transmission-line and waveguiding structures. Proc. IEEE 99(10), 1646–1659 (2011)CrossRefGoogle Scholar
  19. 19.
    X. Liu, C. Li, K. Yao, X. Meng, F. Li, Invisibility cloaks modeled by anisotropic metamaterials based on inductor-capacitor networks. IEEE Antennas Wirel. Propag. Lett. 8, 1154–1157 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    R. Liu, C. Ji, J. Mock, J. Chin, T. Cui, D. Smith, Broadband ground-plane cloak. Science 323(5912), 366–369 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    H.F. Ma, T.J. Cui, Three-dimensional broadband ground-plane cloak made of metamaterials. Nat. Commun. 1, 21 (2010)ADSGoogle Scholar
  22. 22.
    X. Chen, Y. Luo, J. Zhang, K. Jiang, J.B. Pendry, Z. Shuang, Macroscopic invisibility cloaking of visible light. Nat. Commun. 2, 176 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    N. Landy, D.R. Smith, A full-parameter unidirectional metamaterial cloak for microwaves. Nat. Mater. 12, 25 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    A. Alù, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E 72, 016623 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    A. Alù, Mantle cloak: Invisibility induced by a surface. Phys. Rev. B 80(24), 245115 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    P.-Y. Chen, A. Alu, Mantle cloaking using thin patterned metasurfaces. Phys. Rev. B 84(20), 205110 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Y.R. Padooru, A.B. Yakovlev, P.-Y. Chen, A. Alù, Analytical modeling of conformal mantle cloaks for cylindrical objects using sub-wavelength printed and slotted arrays. J. Appl. Phys. 112(3), 034907 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    L. Matekovits, T.S. Bird, Width-modulated microstrip-line based mantle cloaks for thin single-and multiple cylinders. IEEE Trans. Antennas Propag. 62(5), 2606–2615 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    J.C. Soric, A. Monti, A. Toscano, F. Bilotti, A. Alù, Dual-polarized reduction of dipole antenna blockage using mantle cloaks. IEEE Trans. Antennas Propag. 63(11), 4827–4834 (2015)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Monti, J. Soric, M. Barbuto, D. Ramaccia, S. Vellucci, F. Trotta, A. Al, A. Toscano, F. Bilotti, Mantle cloaking for co-site radio-frequency antennas. Appl. Phys. Lett. 108(11), 113502 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    H.M. Bernety, A.B. Yakovlev, Reduction of mutual coupling between neighboring strip dipole antennas using confocal elliptical metasurface cloaks. IEEE Trans. Antennas Propag. 63(4), 1554–1563 (2015)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    C. Gu, Y. Xu, S. Li, W. Lu, J. Li, H. Chen, B. Hou, A broadband polarization-insensitive cloak based on mode conversion. Sci. Rep. 5, 12106 (2015)ADSCrossRefGoogle Scholar
  33. 33.
    S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11(5), 426–431 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    S. Xiao, Q. He, C. Qu, X. Li, S. Sun, L. Zhou, Mode-expansion theory for inhomogeneous meta-surfaces. Opt. Express 21(22), 27219–27237 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Xu, C. Gu, B. Hou, Y. Lai, J. Li, H. Chen, Broadband asymmetric waveguiding of light without polarization limitations. Nat. Commun. 4, 1–8, Article No. 2561 (2013)Google Scholar
  36. 36.
    Y. Fu, Y. Xu, H. Chen, Applications of gradient index metamaterials in waveguides. Sci. Rep. 5, 1–6, Article No. 18223 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    F. Bilotti, S. Tricarico, L. Vegni, Electromagnetic cloaking devices for te and tm polarizations. New J. Phys. 10(11), 115035 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, C. Chan, Extending the bandwidth of electromagnetic cloaks. Phys. Rev. B 76(24), 241104 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    A. Babar, V. Bhagavati, L. Ukkonen, A. Elsherbeni, P. Kallio, L. Sydänheimo, Performance of high-permittivity ceramic-polymer composite as a substrate for uhf rfid tag antennas. Int. J. Antennas Propag. 2012, 1–8, Article No. 905409 (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mahesh Singh Bisht
    • 1
  • Archana Rajput
    • 1
  • Kumar Vaibhav Srivastava
    • 1
  1. 1.Department of Electrical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations