Ultrafast dynamics of non-equilibrium electrons and strain generation under femtosecond laser irradiation of Nickel

Abstract

We present a theoretical study of the ultrafast electron dynamics in transition metals of large electron–phonon coupling constant using ultrashort pulsed laser beams. The significant influence of the dynamics of produced nonthermal electrons to electron thermalisation and electron–phonon interaction is thoroughly investigated for various values of the pulse duration (i.e., from 10 fs to 2.3 ps). The model correlates the role of nonthermal electrons, relaxation processes and induced stress–strain fields. Simulations are presented by choosing Nickel (Ni) as a test material to compute electron–phonon relaxation time due to its large electron–phonon coupling constant. We demonstrate that the consideration of the aforementioned factors leads to significant changes compared to the results the traditional two-temperature model provides. The proposed model predicts a substantially (~ 33%) smaller damage threshold and a large increase of the stress (~ 20%, at early times) which first underlines the role of the nonthermal electron interactions and second enhances its importance with respect to the precise determination of laser specifications in material micromachining techniques.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385 (2012)

    Article  Google Scholar 

  2. 2.

    V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnology 17, 3234 (2006)

    ADS  Article  Google Scholar 

  3. 3.

    V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049 (2008)

    Article  Google Scholar 

  4. 4.

    D. Bäuerle, Laser Processing and Chemistry. (Springer, Berlin; New York, 2000)

    Google Scholar 

  5. 5.

    J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale. (Elsevier/Academic Press, Amsterdam; Boston, 2006)

    Google Scholar 

  6. 6.

    E.L. Papadopoulou, A. Samara, M. Barberoglou, A. Manousaki, S.N. Pagakis, E. Anastasiadou, C. Fotakis, E. Stratakis, Tissue Eng. Part C Me 16, 497 (2010)

    Article  Google Scholar 

  7. 7.

    Z.B. Wang, M.H. Hong, Y.F. Lu, D.J. Wu, B. Lan, T.C. Chong, J. Appl. Phys. 93, 6375 (2003)

    ADS  Article  Google Scholar 

  8. 8.

    C.R. Zuhlke, T.P. Anderson, D.R. Alexander, Opt. Express 21, 8460 (2013)

    ADS  Article  Google Scholar 

  9. 9.

    M. Konstantaki, P. Childs, M. Sozzi, S. Pissadakis, Laser Photonics Rev. 7, 439 (2013)

    Article  Google Scholar 

  10. 10.

    G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    G.D. Tsibidis, C. Fotakis, E. Stratakis, Phys. Rev. B 92, 041405(R) (2015)

    ADS  Article  Google Scholar 

  12. 12.

    G.D. Tsibidis, E. Stratakis, P.A. Loukakos, C. Fotakis, Appl. Phys. A 114, 57 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    T.J.Y. Derrien, T.E. Itina, R. Torres, T. Sarnet, M. Sentis, J. Appl. Phys. 114, 083104 (2013)

    ADS  Article  Google Scholar 

  14. 14.

    J.Z.P. Skolski, G.R.B.E. Römer, J.V. Obona, V. Ocelik, A.J. Huis in 't Veld, J.Th.M. De Hosson, Phys. Rev. B 85, 075320 (2012)

    ADS  Article  Google Scholar 

  15. 15.

    J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)

    ADS  Article  Google Scholar 

  16. 16.

    F. Garrelie, J.P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, O. Parriaux, Opt. Express 19, 9035 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    J. Wang, C. Guo, Appl. Phys. Lett. 87, 251914 (2005)

    ADS  Article  Google Scholar 

  18. 18.

    M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, ACS Nano 3, 4062 (2009)

    Article  Google Scholar 

  19. 19.

    J. Bonse, J. Kruger, J. Appl. Phys. 108, 034903 (2010)

    ADS  Article  Google Scholar 

  20. 20.

    G.D. Tsibidis, E. Skoulas, A. Papadopoulos, E. Stratakis, Phys. Rev. B 94, 081305(R) (2016)

    ADS  Article  Google Scholar 

  21. 21.

    S.M. Petrovic, B. Gakovic, D. Perusko, E. Stratakis, I. Bogdanovic-Radovic, M. Cekada, C. Fotakis, B. Jelenkovic, J. Appl. Phys. 114, 233108 (2013)

    ADS  Article  Google Scholar 

  22. 22.

    Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)

    ADS  Article  Google Scholar 

  23. 23.

    N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, A. Tunnermann, Appl. Phys. a Mater. Sci. Process. 63, 109 (1996)

    ADS  Article  Google Scholar 

  24. 24.

    R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 45, 5079 (1992)

    ADS  Article  Google Scholar 

  25. 25.

    N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, F. Vallée, Phys. Rev. B 61, 16956 (2000)

    ADS  Article  Google Scholar 

  26. 26.

    S.I. Anisimov, B.L. Kapeliov, T.L. Perelman, Sov. Phys. Tech. Phys. 11, 945 (1974 [Zh. Eksp. Teor. Fiz. 66, 776 (1974) (in Russian)]

  27. 27.

    M. Lisowski, P.A. Loukakos, U. Bovensiepen, J. Stahler, C. Gahl, M. Wolf, Appl. Phys. a Mater. Sci. Process. 78, 165 (2004)

    ADS  Article  Google Scholar 

  28. 28.

    B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B 65, 214303 (2002)

    ADS  Article  Google Scholar 

  29. 29.

    E. Carpene, Phys. Rev. B 74, 024301 (2006)

    ADS  Article  Google Scholar 

  30. 30.

    G.D. Tsibidis, Appl. Phys. Lett. 104, 051603 (2014)

    ADS  Article  Google Scholar 

  31. 31.

    K. Sun, F. Vallee, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994)

    ADS  Article  Google Scholar 

  32. 32.

    S. Pogna, G. Dal Conte, V.G. Soavi, Y.-J. Kravets, S. Kim, A.N. Longhi, G. Grigorenko, G. Cerullo, Della, Valle, ACS Photonics 3, 1508 (2016)

    Article  Google Scholar 

  33. 33.

    G. Della Valle, M. Conforti, S. Longhi, G. Cerullo, D. Brida, Phys. Rev. B 86, 155139 (2012)

    ADS  Article  Google Scholar 

  34. 34.

    G. Della Valle et al., Phys. Rev. B 91, 235440 (2015)

    ADS  Article  Google Scholar 

  35. 35.

    J. Garduno-Mejia, M.P. Higlett, S.R. Meech, Chem. Phys. 341, 276 (2007)

    ADS  Article  Google Scholar 

  36. 36.

    J. Garduño-Mejía, M.P. Higlett, S.R. Meech, Surf. Sci. 602, 3125 (2008)

    ADS  Article  Google Scholar 

  37. 37.

    E. Tzianaki, M. Bakarezos, G.D. Tsibidis, Y. Orphanos, P.A. Loukakos, C. Kosmidis, P. Patsalas, M. Tatarakis, N.A. Papadogiannis, Opt. Express 23, 17191 (2015)

    ADS  Article  Google Scholar 

  38. 38.

    S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)

    ADS  Article  Google Scholar 

  39. 39.

    D.S. Leveugle, L.V. Ivanov, Zhigilei, Appl. Phys. A 79, 1643 (2004)

    ADS  Google Scholar 

  40. 40.

    J. Hohlfeld, S.S. Wellershoff, J. Güdde, U. Conrad, V. Jahnke, E. Matthias, Chem. Phys. 251, 237 (2000)

    ADS  Article  Google Scholar 

  41. 41.

    Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)

    ADS  Article  Google Scholar 

  42. 42.

    D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5271 (1998)

    ADS  Article  Google Scholar 

  43. 43.

    S. Halas, T. Durakiewicz, J. Phys. Condensed Matter 10, 10815 (1998)

    ADS  Article  Google Scholar 

  44. 44.

    Kittel, Introduction to Solid State Physics. (Wiley, Hoboken, NJ, 2005)

    Google Scholar 

  45. 45.

    K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. B 61, 2643 (2000)

    ADS  Article  Google Scholar 

  46. 46.

    V. Golosov, A.A. Ionin, Y.R. Kolobov, S.I. Kudryashov, A.E. Ligachev, Y.N. Novoselov, L.V. Seleznev, D.V. Sinitsyn, J. Exp. Theor. Phys. 113, 14 (2011)

    ADS  Article  Google Scholar 

  47. 47.

    Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Appl. Phys. 110, 113102 (2011)

    ADS  Article  Google Scholar 

  48. 48.

    Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Huang, Appl. Phys. Lett. 98, 191105 (2011)

    ADS  Article  Google Scholar 

  49. 49.

    Results from unpublished work. http://newton.ex.ac.uk/research/emag/pubs/Theses/Kruglyak_PhD_Thesis.pdf

  50. 50.

    M.W. Chase, J.L. Curnutt, J.R. Downey, R.A. McDonald, A.N. Syverud, E.A. Valenzuela, J. Phys. Chem. Ref. Data 11, 695 (1982)

    ADS  Article  Google Scholar 

  51. 51.

    Y. Mueller, B. Rethfeld, Phys. Rev. B 87, 035139 (2013)

    ADS  Article  Google Scholar 

  52. 52.

    M. Chen, H.F. Xu, Y.F. Jiang, L.Z. Sui, D.J. Ding, H. Liu, M.X. Jin, Appl. Surf. Sci. 257, 1678 (2010)

    ADS  Article  Google Scholar 

  53. 53.

    D.R. Lide, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, London, 2003–2004)

  54. 54.

    P.B. Johnson, R.W. Christy, Phys. Rev. B 9, 5056 (1974)

    ADS  Article  Google Scholar 

  55. 55.

    E. Tsibidis, K.E. Stratakis, Aifantis, J. Appl. Phys. 111, 053502 (2012)

    ADS  Article  Google Scholar 

  56. 56.

    G.B. Arfken, H.-J. Weber, F.E. Harris, Mathematical Methods for Physicists: a Comprehensive Guide. (Elsevier, Amsterdam; Boston, 2013)

    Google Scholar 

  57. 57.

    N.W. Ashcroft, N.D. Mermin, Solid State Physics. (Holt, New York, 1976)

    Google Scholar 

  58. 58.

    C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Phys. Rev. B 34, 4129 (1986)

    ADS  Article  Google Scholar 

  59. 59.

    O. Matsuda, M.C. Larciprete, R. Li Voti, O.B. Wright, Ultrasonics 56, 3 (2015)

    Article  Google Scholar 

  60. 60.

    E. Tzianaki, M. Bakarezos, G.D. Tsibidis, S. Petrakis, P.A. Loukakos, C. Kosmidis, M. Tatarakis, N.A. Papadogiannis, Appl. Phys. Lett. 108, 254102 (2016)

    ADS  Article  Google Scholar 

  61. 61.

    I.A. Artyukov, D.A. Zayarniy, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, P.N. Saltuganov, Jetp Lett. 99, 51 (2014)

    ADS  Article  Google Scholar 

  62. 62.

    D.A. Zayarny, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, A.A. Kuchmizhak, O.B. Vitrik, Y.N. Kulchin, Laser Phys. Lett. 13, 076101 (2016)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

G.D.T acknowledges financial support from LiNaBioFluid (funded by EU’s H2020 framework programme for research and innovation under Grant Agreement No. 665337) and Nanoscience Foundries and Fine Analysis (NFFA)–Europe H2020-INFRAIA-2014-2015 (under Grant Agreement No. 654360).

Author information

Affiliations

Authors

Corresponding author

Correspondence to George D. Tsibidis.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tsibidis, G.D. Ultrafast dynamics of non-equilibrium electrons and strain generation under femtosecond laser irradiation of Nickel. Appl. Phys. A 124, 311 (2018). https://doi.org/10.1007/s00339-018-1704-4

Download citation