Applied Physics A

, 124:311 | Cite as

Ultrafast dynamics of non-equilibrium electrons and strain generation under femtosecond laser irradiation of Nickel

  • George D. TsibidisEmail author
Part of the following topical collections:
  1. COLA2017


We present a theoretical study of the ultrafast electron dynamics in transition metals of large electron–phonon coupling constant using ultrashort pulsed laser beams. The significant influence of the dynamics of produced nonthermal electrons to electron thermalisation and electron–phonon interaction is thoroughly investigated for various values of the pulse duration (i.e., from 10 fs to 2.3 ps). The model correlates the role of nonthermal electrons, relaxation processes and induced stress–strain fields. Simulations are presented by choosing Nickel (Ni) as a test material to compute electron–phonon relaxation time due to its large electron–phonon coupling constant. We demonstrate that the consideration of the aforementioned factors leads to significant changes compared to the results the traditional two-temperature model provides. The proposed model predicts a substantially (~ 33%) smaller damage threshold and a large increase of the stress (~ 20%, at early times) which first underlines the role of the nonthermal electron interactions and second enhances its importance with respect to the precise determination of laser specifications in material micromachining techniques.



G.D.T acknowledges financial support from LiNaBioFluid (funded by EU’s H2020 framework programme for research and innovation under Grant Agreement No. 665337) and Nanoscience Foundries and Fine Analysis (NFFA)–Europe H2020-INFRAIA-2014-2015 (under Grant Agreement No. 654360).

Supplementary material

339_2018_1704_MOESM1_ESM.docx (338 kb)
See Supplementary Material that provides figures of electron/lattice thermal response, thermomechanical behavior at various fluences (DOCX 337 KB)


  1. 1.
    Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385 (2012)CrossRefGoogle Scholar
  2. 2.
    V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnology 17, 3234 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049 (2008)CrossRefGoogle Scholar
  4. 4.
    D. Bäuerle, Laser Processing and Chemistry. (Springer, Berlin; New York, 2000)CrossRefGoogle Scholar
  5. 5.
    J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale. (Elsevier/Academic Press, Amsterdam; Boston, 2006)Google Scholar
  6. 6.
    E.L. Papadopoulou, A. Samara, M. Barberoglou, A. Manousaki, S.N. Pagakis, E. Anastasiadou, C. Fotakis, E. Stratakis, Tissue Eng. Part C Me 16, 497 (2010)CrossRefGoogle Scholar
  7. 7.
    Z.B. Wang, M.H. Hong, Y.F. Lu, D.J. Wu, B. Lan, T.C. Chong, J. Appl. Phys. 93, 6375 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    C.R. Zuhlke, T.P. Anderson, D.R. Alexander, Opt. Express 21, 8460 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    M. Konstantaki, P. Childs, M. Sozzi, S. Pissadakis, Laser Photonics Rev. 7, 439 (2013)CrossRefGoogle Scholar
  10. 10.
    G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    G.D. Tsibidis, C. Fotakis, E. Stratakis, Phys. Rev. B 92, 041405(R) (2015)ADSCrossRefGoogle Scholar
  12. 12.
    G.D. Tsibidis, E. Stratakis, P.A. Loukakos, C. Fotakis, Appl. Phys. A 114, 57 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    T.J.Y. Derrien, T.E. Itina, R. Torres, T. Sarnet, M. Sentis, J. Appl. Phys. 114, 083104 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    J.Z.P. Skolski, G.R.B.E. Römer, J.V. Obona, V. Ocelik, A.J. Huis in 't Veld, J.Th.M. De Hosson, Phys. Rev. B 85, 075320 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    F. Garrelie, J.P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, O. Parriaux, Opt. Express 19, 9035 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    J. Wang, C. Guo, Appl. Phys. Lett. 87, 251914 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, ACS Nano 3, 4062 (2009)CrossRefGoogle Scholar
  19. 19.
    J. Bonse, J. Kruger, J. Appl. Phys. 108, 034903 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    G.D. Tsibidis, E. Skoulas, A. Papadopoulos, E. Stratakis, Phys. Rev. B 94, 081305(R) (2016)ADSCrossRefGoogle Scholar
  21. 21.
    S.M. Petrovic, B. Gakovic, D. Perusko, E. Stratakis, I. Bogdanovic-Radovic, M. Cekada, C. Fotakis, B. Jelenkovic, J. Appl. Phys. 114, 233108 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, A. Tunnermann, Appl. Phys. a Mater. Sci. Process. 63, 109 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 45, 5079 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, F. Vallée, Phys. Rev. B 61, 16956 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    S.I. Anisimov, B.L. Kapeliov, T.L. Perelman, Sov. Phys. Tech. Phys. 11, 945 (1974 [Zh. Eksp. Teor. Fiz. 66, 776 (1974) (in Russian)]Google Scholar
  27. 27.
    M. Lisowski, P.A. Loukakos, U. Bovensiepen, J. Stahler, C. Gahl, M. Wolf, Appl. Phys. a Mater. Sci. Process. 78, 165 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B 65, 214303 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    E. Carpene, Phys. Rev. B 74, 024301 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    G.D. Tsibidis, Appl. Phys. Lett. 104, 051603 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    K. Sun, F. Vallee, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    S. Pogna, G. Dal Conte, V.G. Soavi, Y.-J. Kravets, S. Kim, A.N. Longhi, G. Grigorenko, G. Cerullo, Della, Valle, ACS Photonics 3, 1508 (2016)CrossRefGoogle Scholar
  33. 33.
    G. Della Valle, M. Conforti, S. Longhi, G. Cerullo, D. Brida, Phys. Rev. B 86, 155139 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    G. Della Valle et al., Phys. Rev. B 91, 235440 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    J. Garduno-Mejia, M.P. Higlett, S.R. Meech, Chem. Phys. 341, 276 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    J. Garduño-Mejía, M.P. Higlett, S.R. Meech, Surf. Sci. 602, 3125 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    E. Tzianaki, M. Bakarezos, G.D. Tsibidis, Y. Orphanos, P.A. Loukakos, C. Kosmidis, P. Patsalas, M. Tatarakis, N.A. Papadogiannis, Opt. Express 23, 17191 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)ADSCrossRefGoogle Scholar
  39. 39.
    D.S. Leveugle, L.V. Ivanov, Zhigilei, Appl. Phys. A 79, 1643 (2004)ADSGoogle Scholar
  40. 40.
    J. Hohlfeld, S.S. Wellershoff, J. Güdde, U. Conrad, V. Jahnke, E. Matthias, Chem. Phys. 251, 237 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5271 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    S. Halas, T. Durakiewicz, J. Phys. Condensed Matter 10, 10815 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    Kittel, Introduction to Solid State Physics. (Wiley, Hoboken, NJ, 2005)zbMATHGoogle Scholar
  45. 45.
    K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. B 61, 2643 (2000)ADSCrossRefGoogle Scholar
  46. 46.
    V. Golosov, A.A. Ionin, Y.R. Kolobov, S.I. Kudryashov, A.E. Ligachev, Y.N. Novoselov, L.V. Seleznev, D.V. Sinitsyn, J. Exp. Theor. Phys. 113, 14 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Appl. Phys. 110, 113102 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Huang, Appl. Phys. Lett. 98, 191105 (2011)ADSCrossRefGoogle Scholar
  49. 49.
  50. 50.
    M.W. Chase, J.L. Curnutt, J.R. Downey, R.A. McDonald, A.N. Syverud, E.A. Valenzuela, J. Phys. Chem. Ref. Data 11, 695 (1982)ADSCrossRefGoogle Scholar
  51. 51.
    Y. Mueller, B. Rethfeld, Phys. Rev. B 87, 035139 (2013)ADSCrossRefGoogle Scholar
  52. 52.
    M. Chen, H.F. Xu, Y.F. Jiang, L.Z. Sui, D.J. Ding, H. Liu, M.X. Jin, Appl. Surf. Sci. 257, 1678 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, London, 2003–2004)Google Scholar
  54. 54.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 9, 5056 (1974)ADSCrossRefGoogle Scholar
  55. 55.
    E. Tsibidis, K.E. Stratakis, Aifantis, J. Appl. Phys. 111, 053502 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    G.B. Arfken, H.-J. Weber, F.E. Harris, Mathematical Methods for Physicists: a Comprehensive Guide. (Elsevier, Amsterdam; Boston, 2013)zbMATHGoogle Scholar
  57. 57.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics. (Holt, New York, 1976)zbMATHGoogle Scholar
  58. 58.
    C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Phys. Rev. B 34, 4129 (1986)ADSCrossRefGoogle Scholar
  59. 59.
    O. Matsuda, M.C. Larciprete, R. Li Voti, O.B. Wright, Ultrasonics 56, 3 (2015)CrossRefGoogle Scholar
  60. 60.
    E. Tzianaki, M. Bakarezos, G.D. Tsibidis, S. Petrakis, P.A. Loukakos, C. Kosmidis, M. Tatarakis, N.A. Papadogiannis, Appl. Phys. Lett. 108, 254102 (2016)ADSCrossRefGoogle Scholar
  61. 61.
    I.A. Artyukov, D.A. Zayarniy, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, P.N. Saltuganov, Jetp Lett. 99, 51 (2014)ADSCrossRefGoogle Scholar
  62. 62.
    D.A. Zayarny, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, A.A. Kuchmizhak, O.B. Vitrik, Y.N. Kulchin, Laser Phys. Lett. 13, 076101 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology (FORTH)HeraklionGreece

Personalised recommendations