Advertisement

Applied Physics A

, 124:325 | Cite as

Irradiation effects on electrical properties of DNA solution/Al Schottky diodes

  • Hassan Maktuff Jaber Al-Ta’ii
  • Vengadesh Periasamy
  • Mitsumasa Iwamoto
Article

Abstract

Deoxyribonucleic acid (DNA) has emerged as one of the most exciting organic material and as such extensively studied as a smart electronic material since the last few decades. DNA molecules have been reported to be utilized in the fabrication of small-scaled sensors and devices. In this current work, the effect of alpha radiation on the electrical properties of an Al/DNA/Al device using DNA solution was studied. It was observed that the carrier transport was governed by electrical interface properties at the Al–DNA interface. Current (I)–voltage (V) curves were analyzed by employing the interface limited Schottky current equations, i.e., conventional and Cheung and Cheung’s models. Schottky parameters such as ideality factor, barrier height and series resistance were also determined. The extracted barrier height of the Schottky contact before and after radiation was calculated as 0.7845, 0.7877, 0.7948 and 0.7874 eV for the non-radiated, 12, 24 and 36 mGy, respectively. Series resistance of the structure was found to decline with the increase in the irradiation, which was due to the increase in the free radical root effects in charge carriers in the DNA solution. Results pertaining to the electronic profiles obtained in this work may provide a better understanding for the development of precise and rapid radiation sensors using DNA solution.

Notes

Acknowledgements

Financial assistance provided by Fundamental Research Grant Scheme, FRGS (FP038-2017A) and the University of Malaya Post-graduate Research Fund, PPP (PG202-2014B) Grants are greatly appreciated.

Supplementary material

339_2018_1703_MOESM1_ESM.jpg (5.6 mb)
Supplementary Material 1 (JPG 5696 KB)
339_2018_1703_MOESM2_ESM.jpg (6.3 mb)
Supplementary Material 2 (JPG 6451 KB)
339_2018_1703_MOESM3_ESM.pdf (312 kb)
Supplementary Material 3 (PDF 312 KB)

References

  1. 1.
    H.M.J. Al-Ta’ii, Y.M. Amin, V. Periasamy, Radiat. Meas. 85, 72 (2015)Google Scholar
  2. 2.
    Y.-C. Hung, W.-T. Hsu, T.-Y. Lin, L. Fruk, Appl. Phys. Lett. 253301, 99 (2011)Google Scholar
  3. 3.
    Ö Güllü, Microelectron. Eng. 648, 87 (2010)Google Scholar
  4. 4.
    C. Teller, I. Willner, Curr. Opin. Biotechnol. 376, 21 (2010)Google Scholar
  5. 5.
    A. Rich, Rev. Mod. Phys. 191, 31 (1959)Google Scholar
  6. 6.
    J.D. Watson, F.H. Crick, Nat. 737, 171 (1953)Google Scholar
  7. 7.
    Z. Yu, W. Li, J. Hagen, Y. Zhou, D. Klotzkin, J. Grote, A. Steckl, Appl. Opt. 1507, 46 (2007)Google Scholar
  8. 8.
    L. Cai, H. Tabata, T. Kawai, Appl. Phys. Lett. 3105, 77 (2000)Google Scholar
  9. 9.
    A.N. Grum-Grzhimailo, Y.V. Popov, E.V. Gryzlova, A.V. Solov’yov, Eur. Phys. J. D 71, 201 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    E.C. Friedberg, Nature 436, 421 (2003)Google Scholar
  11. 11.
    H.M.J. Al-Ta’ii, V. Periasamy, Y.M. Amin, J. Appl. Phys. 114502, 118 (2015)Google Scholar
  12. 12.
    W. Li, R. Jones, H. Spaeth, A. Steckl, Appl. Phys. Lett. 063702, 97 (2010)Google Scholar
  13. 13.
    G.B. Schuster, Long-Range Charge Transfer in DNA II (Springer, Germany, 2004)Google Scholar
  14. 14.
    P.J. Dandliker, R.E. Holmlin, J.K. Barton, Science 1465, 275 (1997)Google Scholar
  15. 15.
    C. Murphy, M. Arkin, Y. Jenkins, N. Ghatlia, S. Bossmann, N. Turro, J. Barton, Science 1025, 262 (1993)Google Scholar
  16. 16.
    E. Meggers, M.E. Michel-Beyerle, B. Giese, JACS 12950, 120 (1998)Google Scholar
  17. 17.
    B. Giese, J. Amaudrut, A.-K. Köhler, M. Spormann, S. Wessely, Nature 318, 412 (2001)Google Scholar
  18. 18.
    P.T. Henderson, D. Jones, G. Hampikian, Y. Kan, G.B. Schuster, Proc. Natl. Acad. Sci. 8353, 96, (1999)Google Scholar
  19. 19.
    P. De Pablo, F. Moreno-Herrero, J. Colchero, J.G. Herrero, P. Herrero, A. Baró, P. Ordejón, J.M. Soler, E. Artacho, Phys. Rev. Lett. 4992, 85 (2000)Google Scholar
  20. 20.
    H.-W. Fink, C. Schönenberger, Nature 407, 398 (1999)Google Scholar
  21. 21.
    D. Porath, A. Bezryadin, S. De Vries, C. Dekker, Nature 635, 403 (2000)Google Scholar
  22. 22.
    A.Y. Kasumov, M. Kociak, S. Gueron, B. Reulet, V. Volkov, D. Klinov, H. Bouchiat, Science 280, 291 (2001)Google Scholar
  23. 23.
    E. Lipiec, J. Kowalska, J. Lekki, A. Wiecheć, W. Kwiatek, Acta Phys. Pol. 506, 121 (2012)Google Scholar
  24. 24.
    A. Konsta, E. Visvardis, K. Haveles, A. Georgakilas, E. Sideris, J. Non Cryst. Solids 295, 305 (2002)Google Scholar
  25. 25.
    K.M. Abu-Salah, A.A. Ansari, S.A. Alrokayan, Biomed. Res. Int. 1, 2010 (2010)Google Scholar
  26. 26.
    B.H. Robinson, N.C. Seeman, Protein Eng. 295, 1 (1987)Google Scholar
  27. 27.
    K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun, Science 72, 297 (2002)Google Scholar
  28. 28.
    B. Yurke, A.J. Turberfield, A.P. Mills, F.C. Simmel, J.L. Neumann, Nature 605, 406 (2000)Google Scholar
  29. 29.
    H. Yan, X. Zhang, Z. Shen, N.C. Seeman, Nature 62, 415 (2002)Google Scholar
  30. 30.
    C.M. Niemeyer, J. Koehler, C. Wuerdemann, ChemBioChem 242, 3 (2002)Google Scholar
  31. 31.
    M. Heilemann, P. Tinnefeld, G. Sanchez Mosteiro, M. Garcia Parajo, N.F. Van Hulst, M. Sauer, JACS 6514, 126 (2004)Google Scholar
  32. 32.
    H. Noh, A.M. Hung, J.N. Cha, Small 3021, 7 (2011)Google Scholar
  33. 33.
    S.Y. Park, A.K. Lytton-Jean, B. Lee, S. Weigand, G.C. Schatz, C.A. Mirkin, Nature 553, 451 (2008)Google Scholar
  34. 34.
    S.M. Goodman, H. Noh, V. Singh, J.N. Cha, P. Nagpal, Appl. Phys. Lett. 083109, 106 (2015)Google Scholar
  35. 35.
    P. Tran, B. Alavi, G. Gruner, Phys. Rev. Lett. 1564, 85 (2000)Google Scholar
  36. 36.
    N. Kang, A. Erbe, E. Scheer, New J. Phys. 023030, 10 (2008)Google Scholar
  37. 37.
    Ö. Güllü, A. Türüt, J. Alloys Compd. 571,509 (2011)Google Scholar
  38. 38.
    R. Gupta, A. Al-Ghamdi, O. Al-Hartomi, H. Hasar, F. El-Tantawy, F. Yakuphanoglu, Synth. Met. 981, 162 (2012)Google Scholar
  39. 39.
    N.M. Khatir, S.M. Banihashemian, V. Periasamy, R. Ritikos, W.H.A. Majid, S.A. Rahman, Sensors 3578, 12 (2012)Google Scholar
  40. 40.
    H.M. Jaber Al-Ta’ii, Y.M. Amin, V. Periasamy, Radiat. Meas. 85, 72 (2015)Google Scholar
  41. 41.
    D. Thwaites, Phys. Med. Biol. 71, 26 (1981)Google Scholar
  42. 42.
    G. Jones, J. Milligan, J. Ward, P. Calabro-Jones, J. Aguilera, Radiat. Res. 190, 136 (1993)Google Scholar
  43. 43.
    J. Milligan, J. Aguilera, C. Wu, J. Ward, Radiat. Res. 442, 145 (1996)Google Scholar
  44. 44.
    G. Zarris, A. Georgakilas, L. Sakelliou, K. Sarigiannis, E. Sideris, Radiat. Meas. 611, 29 (1998)Google Scholar
  45. 45.
    H.M.J. Al-Ta’ii, V. Periasamy, Y.M. Amin, PloS one e0145423, 11 (2016)Google Scholar
  46. 46.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Canada, 2006)CrossRefGoogle Scholar
  47. 47.
    Z. Ahmad, M.H. Sayyad, Phys. E 631, 41 (2009)Google Scholar
  48. 48.
    H.M.J. Al-Ta’ii, Y.M. Amin, V. Periasamy, Sensors 4810, 15 (2015)Google Scholar
  49. 49.
    A.A.M. Farag, I.S. Yahia, Synth. Met. 32, 161 (2011)Google Scholar
  50. 50.
    A.K. Singh, R. Prakash, RSC Adv. 5277, 2 (2012)Google Scholar
  51. 51.
    N. Bazlov, O. Vyvenko, P. Sokolov, N. Kas’yanenko, Y.V. Petrov, Appl. Surf. Sci. 224, 267 (2013)Google Scholar
  52. 52.
    A. Farag, B. Gunduz, F. Yakuphanoglu, W. Farooq, Synth. Met. 2559, 160 (2010)Google Scholar
  53. 53.
    S. Karadeniz, B. Barış, Ö Yüksel, N. Tuğluoğlu, Synth. Met. 16, 168 (2013)Google Scholar
  54. 54.
    K. Çınar, C. Coşkun, Ş Aydoğan, H. Asıl, E. Gür, Nuclear instruments and methods. Phys. Res. Sect. B 616, 268 (2010)Google Scholar
  55. 55.
    E.L. Alpen, Radiation Biophysics (Academic Press, USA, 1997)Google Scholar
  56. 56.
    H.M.J. Al-Ta’ii, V. Periasamy, Y.M. Amin, Sensors 11836, 15 (2015)Google Scholar
  57. 57.
    H.M.J. Al-Ta’ii, Y.M. Amin, V. Periasamy, Sci. Rep. 1, 6 (2016)Google Scholar
  58. 58.
    H.M.J. Al-Ta’ii, V. Periasamy, Y.M. Amin, Sens. Actuators B 195, 232 (2016)Google Scholar
  59. 59.
    J. Butler, R. Pain, A. Robins, J. Rotblat, Proc. R. Soc. Lond. B 12,149, (1958)Google Scholar
  60. 60.
    F. DeFilippes, W. Guild, Radiat. Res. 38, 11 (1959)Google Scholar
  61. 61.
    K.N. Shinde, S. Dhoble, H. Swart, K. Park, in Phosphate Phosphors for Solid-State Lighting, vol. 174 (Springer, Heidelberg New York Dordrecht London, 2012), p. 41Google Scholar
  62. 62.
    G. Di Francia, V. La Ferrara, S. Manzo, S. Chiavarini, Biosens. Bioelectron. 661, 21 (2005)Google Scholar
  63. 63.
    J.E. Lee, E.D. Do, U.R. Lee, M.J. Cho, K.H. Kim, J.-I. Jin, D.H. Shin, S.-H. Choi, D.H. Choi, Polymer 5417, 49 (2008)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUniversity of Al-MuthannaAl-MuthannaIraq
  2. 2.Department of Physics, Faculty of Science, Low Dimensional Materials Research Centre (LDMRC)University of MalayaKuala LumpurMalaysia
  3. 3.Department of Physical ElectronicsTokyo Institute of TechnologyTokyoJapan

Personalised recommendations