Advertisement

Applied Physics A

, 124:280 | Cite as

DFT/TD-DFT study on the electronic and spectroscopic properties of hollow cubic and hollow spherical (ZnO) m quantum dots interacting with CO, NO2 and SO3 molecules

  • Sankarasubramanian Gopalakrishnan
  • Ramasamy Shankar
  • Ponmalai Kolandaivel
Article

Abstract

Hollow spherical (HS) and hollow cubic (HC) (ZnO) m quantum dots (QDs) were constructed and optimized using density functional theory (DFT) method. CO, NO2 and SO3 molecules were used to interact with the HC and HS (ZnO) m QDs at the centre and on the surface of the QDs. The changes in the electronic energy levels of HC and HS (ZnO) m QDs due to the interactions of CO, NO2 and SO3 molecules have been studied. The electronic and spectroscopic properties, such as density of states, HOMO–LUMO energy gap, absorption spectra, IR and Raman spectra of HC and HS (ZnO) m QDs have been studied using DFT and Time dependent-DFT (TD-DFT) methods. The interaction energy values show that the SO3 molecule has strongly interacted with HC and HS (ZnO) m QDs than the CO and NO2 molecules. The results of the density of states show that the HC QDs have peaks that are very close to each other, whereas the same is found to be broad in the HS QDs. The HOMO–LUMO energy gap is more for the HS QDs than the HC QDs, and also it gets decreased, when the NO2 and SO3 molecules interact at the centre of the HC and HS (ZnO) m QDs. The blue and red shifts were observed in the absorption spectra of HS and HC QDs. The natural transition orbital (NTO) plot reveals that the interaction of the molecules on the surface of the QDs reduce the chance of electron–hole recombination; hence the energy gap increases for NO2 and SO3 molecular interactions on the surface of the HC and HS (ZnO) m QDs. The vibrational assignments have been made for HC and HS QDs interacting with CO, NO2 and SO3 molecules.

Notes

Acknowledgements

We express our sincere thanks to HPCF Centre (High Performance Computing Facility) of DST, Government of India, Hyderabad for allowing us to use the facility. One of the authors Gopalakrishnan thank UGC-New Delhi for the award of BSR fellowship (F. no.: 7-307/2010 (BSR), dated 02.01.2013). PK is thankful for UGC for the award of UGC-BSR faculty fellow.

Supplementary material

339_2018_1698_MOESM1_ESM.docx (3 mb)
Partial density of states, IR and Raman spectra for CO, NO2 and SO3 molecular interactions at the center and on the surface of (ZnO)28 hollow cubic QD, (ZnO)30 hollow spherical QD have been obtained using the framework of density functional theory methods are given in the supplementary material (DOCX 3054 KB)

References

  1. 1.
    P.B. Khoza, M.J. Moloto, L.M. Sikhwivhilu, J. Nano Tech. 195106 (2012) (2012)Google Scholar
  2. 2.
    A.J. Nozik, Chem. Phys. Lett. 3, 457 (2008)Google Scholar
  3. 3.
    A.M. Abuelela, T.A. Mohamed, O.V. Prezhdo, J. Phys. Chem. C. 116, 14674 (2012)CrossRefGoogle Scholar
  4. 4.
    J.A. McGuire, J. Joo, J.M. Pietryga, R.D. Schaller, V.I. Klimov, Acc. Chem. Res. 41, 1810 (2008)CrossRefGoogle Scholar
  5. 5.
    J. Berezovsky, M.H. Mikkelsen, N.G. Stoltz, L.A. Coldren, D.D. Awschalom, Science. 320, 349 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    S. Coe, W.-K. Woo, M. Bawendi, V. Bulovic, Nature. 420, 800 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    R. Scheibner, H. Buhmann, D. Reuter, M.N. Kiselev, L.W. Molenkamp, Phys. Rev. Lett. 95, 176602 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    S. Baskoutas, G. Bester, J. Phys. Chem. C. 114, 9301 (2010)CrossRefGoogle Scholar
  9. 9.
    A.G. Nugraha, M.K. Saputro, B. Agusta, H.K. Yuliarto, R. Dipojono, Haezono, J. Phys. Con. Series. 739, 012080 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Pokrant, K.B. Whaley, Eur. Phys. J. D. 6, 255 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    S. Kilina, S. Ivanov, S. Tretiek, J. Am. Chem. Soc. 22, 7717 (2002)Google Scholar
  12. 12.
    Ru..G. Nikov, A.Og Dikovska, N.N. Nedyalkov, P.A. Atanasov, G. Atanasova, D. Hirsch, B. Rauschenbach, Appl. Phys. A. 123, 657 (2017)ADSCrossRefGoogle Scholar
  13. 13.
    D. Sun, H.J. Sue, N. Miyatake, J. Phys. Chem. C. 112, 16002 (2008)CrossRefGoogle Scholar
  14. 14.
    Z.L. Wang, J. Phys. Conden. Matter. 16, R829 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    U. Ozgur, Ya..J. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Markoc, J. Appl. Phys. 98, 041301 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Prog. Mater. Sci. 50, 293 (2005)CrossRefGoogle Scholar
  17. 17.
    D.C. Look, B. Claflin, Phys. Status Solidi B. 241, 624 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    A. Becheri, M. Durr, P. Lo Nstro, P. Baglioni, J. Nanoparticle Res. 10, 679 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    N. Moloto, M.J. Moloto, N.J. Coville, S. Sinha, Ray, J. Cryst. Growth. 311, 3924 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Y.W. Jun, J.S. Choi, J. Cheon, Angew. Chem. 45, 3414 (2006)CrossRefGoogle Scholar
  21. 21.
    C. Tang, S. Fan, M.L. De La Chapelle, H. Dang, P. Li, Adv. Mater. 12, 1346 (2000)CrossRefGoogle Scholar
  22. 22.
    C.C. McCrory, S. Jung, I.M. Ferrer, S.M. Chatman, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 137, 4347 (2015)CrossRefGoogle Scholar
  23. 23.
    J.A. Rodrigues, A. Maiti, J. Phys. Chem. B. 104, 3630 (2000)CrossRefGoogle Scholar
  24. 24.
    B. Meyer, D. Marx, Phys. Rev. B: Condens. Matter. 67, 035403 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    B. Meyer, D. Marx, O. Dulub, U. Diebold, M. Kunat, D. Langenberg, C. Woll, Angew. Chem. Int. Ed. 43, 6642 (2004)CrossRefGoogle Scholar
  26. 26.
    D.J. Cooke, A. Marmier, S.C. Parker, J. Phys. Chem. B. 110, 7985 (2006)CrossRefGoogle Scholar
  27. 27.
    S. Gopalakrishnan, P. Kolandaivel, Mater. Chem. Phys. 181, 248 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Gopalakrishnan, P. Kolandaivel, Comp. Theor. Chem. 1111, 56 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Repp, E. Erdem, Spectrochim. Acta A Mol. Biomol. Spectrosc. 152, 637 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    T. Ruf, S. Repp, J. Urban, R. Thomann, E. Erdem, J. Nanopart Res. 18, 109 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    H. Zhou, H. Aives, D.M. Hofmann, B.K. Meyer, G. Kaczmarczyk, A. Hoffman, C. Thomsen, Phys. Status Solidi B. 229, 825 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    Y.-Q. Li, Y. Yang, S.-Y. Fu, X.-Y. Yi, L.-C. Wang, H.-D. Chen, J. Phys. Chem. C. 118, 18616 (2008)CrossRefGoogle Scholar
  33. 33.
    A.C. Balazs, T. Emrick, T.P. Russell, Science. 314, 1107 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    I.P. Bauermann, J. Bill, F. Aldinger, J. Phys. Chem. B. 110, 5182 (2006)CrossRefGoogle Scholar
  35. 35.
    A.L. Lenz, L. Selegard, F. Soderlind, A. Larsson, P.O. Holtz, K. Urdal, L. Ojamae, P.O. Kell, J. Phys. Chem. C. 113, 17332 (2009)CrossRefGoogle Scholar
  36. 36.
    A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, J. Am. Chem. Soc. 131, 12540 (2009)CrossRefGoogle Scholar
  37. 37.
    S.Y. Kim, I.S. Lee, Y.S. Yeon, S.M. Park, J.K. Song, Bull. Korean Chem. Soc. 29, 1960 (2008)CrossRefGoogle Scholar
  38. 38.
    Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Huqhes, G.A. Somorjai, A. P. Alivisatos, Science. 304, 711 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    C.M. Rivaldo-Gomez, F.F. Ferreira, G.T. Landi, J.A. Souza, Sci. Rep. 6, 32104 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian, Inc., Wallingford CT (2009)Google Scholar
  41. 41.
    G. Kresse, J. Furthmuller, Phys. Rev. B. 47, R558 (1993)ADSCrossRefGoogle Scholar
  42. 42.
    A.D. Becke, Phys. Rev. A. 38, 3098 (1988)ADSCrossRefGoogle Scholar
  43. 43.
    A.D. Becke, J. Chem. Phys. 98, 1372 (1993)ADSCrossRefGoogle Scholar
  44. 44.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785 (1988)ADSCrossRefGoogle Scholar
  45. 45.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)ADSCrossRefGoogle Scholar
  46. 46.
    S.A. Fischer, A.H. Crotty, S.V. Kilina, S.A. Ivanov, S. Tretiak, Nanoscale. 4, 904 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    J.C. Phillips, L. Kleinman, Phys. Rev. 116, 287 (1959)ADSCrossRefGoogle Scholar
  48. 48.
    E. Antoncik, J. Phys. 4, 439 (1954)Google Scholar
  49. 49.
    A.H. Nielsen, W. Gordy, Phys. Rev. 56, 781 (1939)ADSCrossRefGoogle Scholar
  50. 50.
    L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, A. Deepthy, B. Krishnan, J. Appl. Phys. 102, 063524 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    M.K. Debanath, S. Karmakar, Mater. Lett. 111, 116 (2013)CrossRefGoogle Scholar
  52. 52.
    K. Sowri Babu, A. Ramachandra Reddy, Ch Sujatha, K. Venugopal, A.N. Reddy, Mallika, J. Ads. Ceram. 2, 260 (2013)CrossRefGoogle Scholar
  53. 53.
    N. Mina-Camilde, I.C. Manzanares, J.F. Caballero, J. Chem. Edu. 73, 804 (1996)CrossRefGoogle Scholar
  54. 54.
    N. Karunanidhi, S.R. Varadhan, S. Gunasekaran, Asian J. Chem. 7, 23 (1995)Google Scholar
  55. 55.
    K. Meinel, A. Hofmann, S. Forster, R. Kulla, K.-M. Schindler, H. Neddermeyer, J. Sauer, W. Widdra, Phys. Chem. Chem. Phys. 8, 1593 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sankarasubramanian Gopalakrishnan
    • 1
  • Ramasamy Shankar
    • 1
  • Ponmalai Kolandaivel
    • 1
  1. 1.Department of PhysicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations