Skip to main content

Fabrication and characterization of Au/n-CdTe Schottky barrier under illumination and dark

Abstract

CdTe nanoparticles have been grown by chemical reduction method using EDA as capping agent. These are used to fabricate Schottky barrier in a simple cost-effective way at room temperature. The grown nanoparticles are structurally characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM). The optical properties of nano CdTe is characterized by UV–Vis absorption spectra, PL spectra. The band gap of the CdTe nanoparticles is increased as compared to CdTe bulk form indicating there is blue shift. The increase of band gap is due to quantum confinement. Photoluminescence spectra shows peak which corresponds to emission from surface state. CdTe nanofilm is grown on ITO coated glass substrate by dipping it on toluene containing dispersed CdTe nanoparticles. Schottky barrier of Au/n-CdTe is fabricated on ITO coated glass by vacuum deposition of gold. IV and CV characteristics of Au/n-CdTe Schottky barrier junction have been studied under dark and light condition. It is found that these characteristics are influenced by surface or interface traps. The values of barrier height, ideality factor, donor concentration and series resistance are obtained from the reverse bias capacitance–voltage measurements.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    T. Trindade, P.O. Brien, N.L. Pickett, Chem. Mater. 13(11), 43 (2001)

    Article  Google Scholar 

  2. 2.

    G.M. Whitesides, G. Bartosz, Science, 295:2418–2421 (2002)

    ADS  Article  Google Scholar 

  3. 3.

    X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, J.L. Goldman, Nature. 425, 274 (2003)

    ADS  Article  Google Scholar 

  4. 4.

    M.C. McAlpine, R.S. Friedman, S. Jin, K. Lin, W.U. Wang, C.M. Lieber, Nano Lett. 3, 1531 (2003)

    ADS  Article  Google Scholar 

  5. 5.

    B.R. Mehta, F.E. Kruis, Solar Energy Mater Solar Cells 85(1), 107 (2005)

    Google Scholar 

  6. 6.

    W. Wang, C. Chen, K.H. Lin, Y. Fang, C.M. Lieber, Nanosensors, US 2007/0264623 A1, (2007)

  7. 7.

    M.H. Ehsan, H.R. Dizaji, M.H. Mirha, Dig J Nanomater Biostruct. 7, 629 (2012)

    Google Scholar 

  8. 8.

    V.P. Singh, J.C. McClure, Sol Energy Mater Sol Cells. 76, 369 (2003)

    Article  Google Scholar 

  9. 9.

    V.P. Singh, R.S. Singh, J.W. Thompson, V. Jayaraman, S. Sanagapalli, V.K. Rangari, Sol Energy Mater Sol Cells. 81, 293 (2004)

    Article  Google Scholar 

  10. 10.

    H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C.M. Lieber, Nature. 375(6534), 769 (1995)

    ADS  Article  Google Scholar 

  11. 11.

    X.F. Duan, Y. Huang, Y. Cui, J.F. Wang, C.M. Lieber, Nature. 409(6816), 66 (2001)

    ADS  Article  Google Scholar 

  12. 12.

    B. Gates, Y. Wu, Y. Yin, P. Yang, Y. Xia, J. Am. Chem. Soc. 123(46), 11500 (2001)

    Article  Google Scholar 

  13. 13.

    J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Science. 287(5457), 1471 (2000)

    ADS  Article  Google Scholar 

  14. 14.

    C.R. Martin, Science. 266(5193), 1961 (1994)

    ADS  Article  Google Scholar 

  15. 15.

    X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature. 404(6773), 59 (2000)

    ADS  Article  Google Scholar 

  16. 16.

    S.R. Nicewarner-Peña, R.G. Freeman, B.D. Reiss, L. He, D.J. Peña, I.D. Walton, R. Cromer, C.D. Keating, M.J. Natan, Science. 294(5540), 137 (2001)

    ADS  Article  Google Scholar 

  17. 17.

    J.S. Yu, J.Y. Kim, S. Lee, J.K.N. Mbindyo, B.R. Martinb, T.E. Mallouk, Chem Commun. 24, 2445 (2000)

    Article  Google Scholar 

  18. 18.

    A. Alnajjar, M.F.A. Alias, R.A. Almatuk, A.A. Al-Douri, Renew. Energy. 34, 2160 (2009)

    Article  Google Scholar 

  19. 19.

    W.F. Mohammad, Circuits Syst. 3, 42 (2012)

    Article  Google Scholar 

  20. 20.

    J.D. Olson, Y.W. Rodriguez, L.D. Yang, G.B. Alers, S.A. Carter, Appl. Phys. Lett. 96, 242103 (2010)

    ADS  Article  Google Scholar 

  21. 21.

    S. Sun, H. Liu, Y. Gao, D. Qin, J. Chen, J. Mater. Chem. 22, 19207 (2012)

    Article  Google Scholar 

  22. 22.

    I.M. Dharmadasa, G.G. Roberts, M.C. Petty, J. Phys. D: Appl. Phys. 15, 901 (1982)

    ADS  Article  Google Scholar 

  23. 23.

    S.H. Demtsu, J.R. Sites, Thin Solid Films. 510, 320 (2006)

    ADS  Article  Google Scholar 

  24. 24.

    K.R. Chauhan, I. Mukhopadhyay, J. Appl. Phys. 115, 224506 (2014)

    ADS  Article  Google Scholar 

  25. 25.

    G. Kartopu, L.J. Phillips, V. Barrioz, S.J.C. Irvine, S.D. Hodgson, E. Tejedor, D. Dupin, A.J. Clayton, S.L. Rugen-Hankey, K. Durose, Prog. Photovolt: Res. Appl. 24, 283 (2016)

    Article  Google Scholar 

  26. 26.

    D. Zhao, Z. He, W.H. Chan, M.M.F. Choi, J. Phys. Chem. C 113, 1293 (2008)

    Article  Google Scholar 

  27. 27.

    H.B. Bu, H. Kikunaga, K. Shimura, K. Takahasi, T. Taniguchi, D.G. Kim, Phys. Chem. Chem. Phys. 15, 2903 (2013)

    Article  Google Scholar 

  28. 28.

    N.G. Semaltianos, S. Logothetidis, W. Perrie, S. Romani, R.J. Potter, M. Sharp, G. Dearden, K.G. Watkins, Appl. Phys. Lett. 95, 033302 (2009)

    ADS  Article  Google Scholar 

  29. 29.

    M.A.S. Sadjadi, B. Sadeghi, M. Meskinfam, K. Zare, J. Azizian, Physica E. 40, 3183 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    S. Saha, S.R. Bera, Int J Metall Mat Sci Eng. 3(1), 37 (2013)

    Google Scholar 

  31. 31.

    S.R. Bera, S. Saha, Appl Nanosci. 6, 1037 (2016)

    ADS  Article  Google Scholar 

  32. 32.

    A.K. Tiwari, V.K. Verma, T.A. Jain, P.K. Bajpai, Soft Nanosci Lett. 3, 52 (2013)

    Article  Google Scholar 

  33. 33.

    R.S. Singh, V.K. Rangari, S. Sanagapalli, V. Jayaraman, S. Mahendra, V.P. Singh, Sol Energy Mater Sol Cells. 82, 315 (2004)

    Article  Google Scholar 

  34. 34.

    S. Riaz, A. Butt, S. Naseem, The 2013 World Congress on Adv. in Nano, Biomechanics, Robotics and Ener. Res., Seoul, Korea, (2013) 654

  35. 35.

    J.J. Glennon, W.E. Buhro, R.A. Loomis, J. Phys. Chem. C. 112(13), 4813 (2008)

    Article  Google Scholar 

  36. 36.

    Y.S. Park, Y. Okamoto, N. Kaji, M. Tokeshi, Y. Baba, J. Nanopart. Res. 13, 5781 (2011)

    ADS  Article  Google Scholar 

  37. 37.

    T. Suriwong, A. Phuruangrat, S. Thongtem, T. Thongtem, J. Ovonic Res. 11(6), 257 (2015)

    Google Scholar 

  38. 38.

    S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, New York, 1981), pp. 249

    Google Scholar 

  39. 39.

    B.G. Streetman, S.K. Banerjee, Solid state electronic devices. 6th edn. (PHI Learning Private Limited, New Delhi-11000, 1 2009), pp-228

  40. 40.

    J.R. Pugh, D. Mao, J.G. Zhang, M.J. Heben, A.J. Nelson, A.J. Frank, J. Appl. Phys. 74(4), (1993)

  41. 41.

    H. Kanbur, S. Altindal, ,T. Mammadov, Y. Şafak, J Optoelectron Adv. Mat. 13(6), 713 (2011)

    Google Scholar 

  42. 42.

    R.K. Swank, Phys. Rev. 153, 844 (1967)

    ADS  Article  Google Scholar 

  43. 43.

    P.C. Rusu, G. Brocks, J. Phys. Chem. B. 10, 22628 (2006)

    Article  Google Scholar 

  44. 44.

    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    ADS  Article  Google Scholar 

  45. 45.

    D.T. Quan, H. Hbib, Solid-State Electron. 36, 339 (1993)

    ADS  Article  Google Scholar 

  46. 46.

    S. Karataş, S. Altındal, A. Türüt, A. Özmen, Appl. Surf. Sci. 217, 250 (2003)

    ADS  Article  Google Scholar 

  47. 47.

    S. Altındal, A. Tataroğlu, I. Dökme, Solar Energy Mater. and Solar Cells. 85, 345 (2005)

    Article  Google Scholar 

  48. 48.

    S. Chand, J. Kumar, Semicond. Sci. Technol. 10, 1680 (1995)

    ADS  Article  Google Scholar 

  49. 49.

    S. Ashok, K.P. Pande, Sol. Cells. 14, 61 (1985)

    Article  Google Scholar 

  50. 50.

    M. Saad, A. Kasiss, Sol. Energy Mater. and Sol. Cells. 77, 415 (2003)

    Article  Google Scholar 

  51. 51.

    J. Verschraegen, M. Burgelman, J. Penndorf, Thin Solid Films. 480, 307 (2005)

    ADS  Article  Google Scholar 

  52. 52.

    C.S. Lao, J. Liu, P.X. Gao, L.Y. Zhang, D. Davidovic, R. Tummala, Z.L. Wang, Nano Lett. 2, 263 (2006)

    ADS  Article  Google Scholar 

  53. 53.

    H. Elhadidy, J. Sikula, J. Franc, Semicond. Sci. Technol. 27, 015006 (2012)

    ADS  Article  Google Scholar 

  54. 54.

    M.G. Mahesha, V.B. Kasturi, and G. K. Shivakumar, Turk J Phys. 32, 151 (2008)

    Google Scholar 

  55. 55.

    A. Andreev, L. Grmela, P. Moravec, G. Bosman, J. Sikula, Semicond. Sci. Technol. 25, 055016 (2010)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

Authors are acknowledging UGC (SAP) and DST (FIST) for supporting department of Physics and Technophysics Department of Vidyasagar University with various instrumental facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Swades Ranjan Bera.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bera, S.R., Saha, S. Fabrication and characterization of Au/n-CdTe Schottky barrier under illumination and dark. Appl. Phys. A 124, 287 (2018). https://doi.org/10.1007/s00339-018-1697-z

Download citation