Applied Physics A

, 124:276 | Cite as

Optical properties of Mn-doped 0.15Pb(In1/2Nb1/2)O3–0.57Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 single crystal

  • Yue Li
  • Yanxue Tang
  • Feifei Wang
  • Xiangyong Zhao
  • Jianwei Chen
  • Zhou Zeng
  • Linrong Yang
  • Haosu Luo


The refractive indices, extinction coefficients, and transmittance of 1 mol% Mn-doped 0.15Pb(In1/2Nb1/2)O3–0.57Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 (Mn-PIN–PMN–PT) relaxor-based single crystal were investigated. The Mn-PIN–PMN–PT single crystal exhibited a rhombohedral to tetragonal phase transition temperature Trt of 120.3 °C and Curie temperature TC of 152.4 °C. The improved Sellmeier equation for the refractive index was determined by least-squares method, which can be applied to calculate accurately the refractive index over a wide wavelength range from 350 to 5000 nm. The Sellmeier optical coefficients were found to be S0 = 1.178 × 1014 m−2, λ0 = 0.215 µm, E0 = 6.06 eV and Ed = 28.73 eV through fitting the single-term oscillator equation. The transmittance reached about 72% over a wide wavelength from 500 nm to 2.5 µm. The optical band-gap energy Eg of 3.34 eV was obtained from absorption coefficient spectra by use of the Tauc model. The results can offer essential parameters of the Mn-PIN–PMN–PT single crystal for optical device applications.



This study was funded by Nature Science Foundation of China (No. 51372258), Science and Technology Commission of Shanghai Municipality (No. 15441904600), Key Technologies R&D Program (No. 2014YFC0201102), and the Opening Project of Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences (No. KLIFMD201603).

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest because there is no funding received for this work.


  1. 1.
    J.F. Scott, C.A.P. Dearajo, Science. 246, 1400–1405 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    S.J. Zhang, F. Li, J. Appl. Phys. 111, 031301 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    Q. Xu, X.Y. Zhao, X.B. Li et al., Infrared Phys. Technol. 76, 111–115 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    X.M. Wan, H.Q. Xu, T.H. He, D. Lin, H.S. Luo, J. Appl. Phys. 93, 4766–4768 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    Y.X. Tang, H.S. Luo, J. Phys. D: Appl. Phys. 42, 075406 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    L.Y. Yang, L. Li, X.Y. Zhao, Q. Xu, J.S. Ma, S. Wang, X.B. Li, W.N. Di, H.Q. Xu, H.S. Luo, J. Alloy. Compounds. 695, 760–764 (2017)CrossRefGoogle Scholar
  7. 7.
    H.S. Luo, G.S. Xu, H.Q. Xu, P.C. Wang, Z.W. Yin, Jpn. J. Appl. Phys. 39, 5581–5585 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    H.S. Luo, G.S. Xu, P.C. Wang, Z.W. Yin, Ferroelectrics. 231, 685–690 (1999)Google Scholar
  9. 9.
    X.M. Wan, H.S. Luo, X.Y. Zhao, D.Y. Wang, H.L.W. Chan, C.L. Choy, Appl. Phys. Lett. 85, 5233–5235 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    X.M. Wan, H.L.W. Chan, C.L. Choy, X.Y. Zhao, H.S. Luo, J. Appl. Phys. 96, 1387–1391 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Y.X. Tang, L.H. Luo, Y.M. Jia et al., Appl. Phys. Lett. 89, 162906 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Y.Y. Zhang, X.B. Li, D.A. Liu et al., J. Cryst. Growth. 318, 890–894 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    E.W. Sun, W.W. Cao, Prog. Mater. Sci. 65, 124–210 (2014)CrossRefGoogle Scholar
  14. 14.
    L.H. Liu, X. Wu, S. Wang, W.N. Di, D. Lin, X.Y. Zhao, H.S. Luo, J. Cryst. Growth. 318, 856–859 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    G.S. Xu, K. Chen, D.F. Yang, J.B. Li, Appl. Phys. Lett. 90, 032901 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    X. Liu, B.J. Fang, H. Deng et al., J. Appl. Phys. 117, 244102 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    X.B. Li, X.Y. Zhao, B. Ren, H.S. Luo, W.W. Ge, Z. Jiang, S. Zhang, Scripta. Mater. 69, 377–380 (2013)CrossRefGoogle Scholar
  18. 18.
    U. Schlarb, K. Betzler, Phys. Rev. B. 48, 15613–15620 (1993)ADSCrossRefGoogle Scholar
  19. 19.
    F.M. Wu, X.J. He, J.Y. Zhang, B. Yang, E.W. Sun, J.X. Jiang, W.W. Cao, Opt. Mater. 60, 101–104 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Y.H. Bing, R. Guo, A.S. Bhalla, Ferroelectrics. 242, 1–11 (2000)CrossRefGoogle Scholar
  21. 21.
    C.J. He, F.F. Wang, D. Zhou et al., J. Phys. D: Appl. Phys. 39, 4337–4340 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    M. Didomenico, S.H. Wemple, J. Appl. Phys. 40, 720–734 (1969)ADSCrossRefGoogle Scholar
  23. 23.
    S.H. Wemple, M. Didomenico, Phys. Rev. Lett. 23, 1156–1160 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    S.H. Wemple, M. Didomenico, Appl. Phys. Lett. 3, 1338–1351 (1971)Google Scholar
  25. 25.
    J. Tauc, Solid state physics: optical properties of solids (Springer, Dordercht, 1972), p. 372Google Scholar
  26. 26.
    P.D. Thacher, J. Appl. Phys. 41, 4790–4797 (1970)ADSCrossRefGoogle Scholar
  27. 27.
    M. Didomenico, S.H. Wemple, Phys. Rev. 166, 565–576 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Optoelectronic Material and DeviceShanghai Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Key Laboratory of Inorganic Functional Material and Device, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations