Advertisement

Applied Physics A

, 124:267 | Cite as

Photo- and thermally induced property change in Ag diffusion into Ag/As2Se3 thin films

  • Adyasha Aparimita
  • C. Sripan
  • R. Ganesan
  • Ramakanta Naik
Article

Abstract

In the present report, we have prepared As2Se3 and bilayer Ag/As2Se3 chalcogenide thin films prepared by thermal evaporation process. The top Ag layer is being diffused into the bottom As2Se3 layer by 532 nm laser irradiation and thermal annealing process. The photo and thermal energy drives the Ag+ ions into the As2Se3 matrix that enhances the formation of As–Se–Ag solid solution which shows the changes of optical properties such as transmission, absorption power, refractive index, and optical band gap. The transmission power drastically decreased for the thermal-induced film than the laser induced one; and the reverse effect is seen for the absorption coefficient. The non-linear refractive index is found to be increased due to the Ag diffusion into As2Se3 film. The indirect allowed optical band gap is being reduced by a significant amount of 0.17 eV (thermal diffusion) and 0.03 eV (photo diffusion) from the Ag/As2Se3 film. The Ag diffusion creates chemical disorderness in the film observed from the two parameters which measures the degree of disorder such as Urbach energy and Tauc parameter. The structural change is not noticed in the studied film as seen from the X-ray diffraction pattern. Scanning electron microscopy and atomic force microscopy investigations showed that the surface morphology was influenced by the diffusion phenomena. The change in optical constants in such type of film can be used in optical waveguides and optical devices.

Notes

Acknowledgements

The authors thank Board of Research in Nuclear Science (BRNS) for financial support (No. 37(3)/14/02/2016-BRNS/37016) and Department of Physics, Indian Institute of Science (IISc.) for SEM study. The authors thank Mr. Shuvendu Jena of Atomic and Molecular Physics Division, BARC for his help for AFM measurement.

References

  1. 1.
    R.K. Debnath, N. Nusbar, A.G. Fitzgerald, Electron beam induced chemical modification of amorphous chalcogenide–metal bilayers and its application. Appl. Surf. Sci. 243, 228–231 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    C.P. McHardy, A.G. Fitzgerald, P.A. Moir et al., The dissolution of metals in amorphous chalcogenides and the effects of electron and ultraviolet radiation. J. Phys. C Solid State Phys. 20, 4055 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    E. Marquez, R.J.C. Garay, A. Zakery, et al. On the kinetics of Ag photo dissolution in As2S3 chalcogenide glass films: oscillatory behaviour of the reaction rate. Phil. Mag. B. 63, 1169 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    M. Behera, S. Behera, R. Naik, Optical band gap tuning by laser induced Bi diffusion into As2Se3 film probed by spectroscopic technique. RSC Adv. 7, 18428–18437 (2017)CrossRefGoogle Scholar
  5. 5.
    T. Wagner, M. Frumar, S.O. Kasap et al., New Ag-containing amorphous chalcogenide thin films-prospective materials for rewriteable optical memories. J. Optoelectron. Adv. Mater. 3, 227 (2001)Google Scholar
  6. 6.
    A. Yoshikawa, O. Ochi, H. Nagai et al., A novel inorganic photoresist utilizing Ag photodoping in Se–Ge glass films. Appl. Phys. Lett. 29, 161 (1976)CrossRefGoogle Scholar
  7. 7.
    E. Marquez, J. Fernhdez-Pefia, J.M. Gonzhlez-Leal et al., Optical reflectivity monitoring of the Ag-photodissolution kinetics in As30S70 chalcogenide glass films. Mater. Lett. 25, 143–146 (1995)CrossRefGoogle Scholar
  8. 8.
    K. Ogusu, K. Shimakawa, Optical nonlinearities in As2Se3 chalcogenide glasses doped with Cu and Ag for pulse durations on the order of nanoseconds. Opt. Express. 17(10), 8165 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    J.M. Harbold, F.O. Ilday, F.W. Wise et al., Highly nonlinear As–S–Se glasses for all-optical switching. Opt. Lett. 27(2), 119–121 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    S. Kumar, D. Singh, R. Thangaraj, Electronic structure and optical band gap of silver photo-diffused Ge2Sb2Te5 thin film. Appl. Surf. Sci. 273, 437–443 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    T. Wagner, S. Schroeter, T. Glaser, et al. Holographic grating preparation in Ag/As30S70 multilayer and bilayer structures. J. Non Cryst. Solids 326 & 327, 500–504 (2003)CrossRefGoogle Scholar
  12. 12.
    K. Mietzsch, A.G. Fitzgerald, Electron-beam-induced patterning of thin film arsenic-based chalcogenides. Appl. Surf. Sci. 162–163, 464–468 (2000)CrossRefGoogle Scholar
  13. 13.
    N.I. Mou, M. Tabib-Azar, Photo reduction of Ag+ in Ag/Ag2S/Au memristor. Appl. Surf. Sci. 340, 138–142 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    K. Ogusu, J. Yamasaki, S. Maeda, Linear and nonlinear optical properties of Ag–As–Se chalcogenide glasses for all-optical switching. Opt. Lett. 29(3), 265–267 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    R.E. Slusher, G. Lenz, J. Hodelin, Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. B. 21(6), 1146–1155 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    K.S. Abedin, Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber. Opt. Express. 13(25), 10266–10271 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    V.G. Taeed, N.J. Baker, L. Fu et al., Ultrafast all-optical chalcogenide glass photonic circuits. Opt. Express. 15(15), 9205–9221 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    K. Ogusu, S. Maeda, M. Kitao et al., Optical and structural properties of Ag(Cu)–As2Se3 chalcogenide films prepared by a photo doping. J. Non Cryst. Solids. 347, 159 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    K. Tanaka, Physics and applications of photo doping in chalcogenide glasses. J. Non Cryst. Solids. 137 & 138, 1021 (1991)CrossRefGoogle Scholar
  20. 20.
    T. Kawaguchi, S. Maruno, Composition dependence of Ag photo doping into amorphous Ge–S films. J. Appl. Phys. 71, 2195–2201 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    M. Krbal, S. Stehlik, T. Wagner, Electric properties and structure of Agx (As0.33S0.335Se0.335)100–x bulk glasses. J. Phys. Chem. Solids 68, 958 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    K. Shimakawa, A. Kolobov, S.R. Elliott, Photo induced effects and metastability in amorphous semiconductors and insulators. Adv. Phys. 44, 475 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    T. Kawaguchi, A.V. Kolobov (ed.), Photo induced Metastability in Amorphous Semiconductors (Wiley, Berlin, 2003), p. 182Google Scholar
  24. 24.
    T. Kawaguchi, Photo induced metastability in Ag-containing chalcogenide glasses. J. Non Cryst. Solids 345 & 346, 265–269 (2004)CrossRefGoogle Scholar
  25. 25.
    R. Naik, C. Sripan, R. Ganesan, Photo darkening in As50Se50 thin films by 532 nm laser irradiation. Opt. Laser Technol. 90, 158–164 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    Naik R, Ganesan R, Sangunni KS, Optical properties change with the addition and diffusion of Bi to As2S3 in the Bi/As2S3 bilayer thin film. J. Alloys Compd. 554, 293–298 (2013)CrossRefGoogle Scholar
  27. 27.
    T.G. Robinson, R.G. De Corby, J.N. McMullin, et al. Strong Bragg gratings photo induced by 633-nm illumination in evaporated As2Se3 thin films. Opt. Lett. 28, 459 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    S. Ramachandran, S.G. Bishop, Low loss photo induced waveguides in rapid thermally annealed films of chalcogenide glasses. Appl. Phys. Lett. 74, 13 (1999)ADSCrossRefGoogle Scholar
  29. 29.
    A. Ganjoo, K. Shimakawa, H. Kamiya, et al. Percolative growth of photo darkening in amorphous As2S3 films. Phys. Rev. B Condens. Matter. Phys. 62, R14601 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    P. Pradhan, R. Naik, N. Das et al., Laser induced optical properties change by photo diffusion of Sb into As2Se3 chalcogenide thin films. Opt. Laser Technol. 96, 158 (2017)ADSCrossRefGoogle Scholar
  31. 31.
    A. Ganjoo, H. Jain, Millisecond kinetics of photo induced changes in the optical parameters of a—As2S3 films. Phys. Rev. B Condens. Matter. Phys. 74, 024201 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 16, 1214 (1983)ADSCrossRefGoogle Scholar
  33. 33.
    K. Shimakawa, Sh. Nitta, M. Mori, Influence of silver additive on electronic and ionic natures in amorphous As2Se3. Phys. Rev. B 18, 4348 (1978)ADSCrossRefGoogle Scholar
  34. 34.
    R. Naik, P.P. Sahoo, C. Sripan, Laser induced Bi diffusion in As40S60 thin films and the optical properties change probed by FTIR and XPS. Opt. Mater. 62, 211–218 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    M. Behera, P. Naik, P. Panda et al., Role of Te on the spectroscopic properties of As50Se40Te10 thin films: an extensive study by FTIR and Raman spectroscopy. Opt. Mater. 66, 616–622 (2017)ADSCrossRefGoogle Scholar
  36. 36.
    P. Knotek, L. Tichy, On photo-expansion and microlens formation in (GeS2)0.74(Sb2S 3)0.26 chalcogenide glass. Mater. Res. Bull. 47, 4246 (2012)CrossRefGoogle Scholar
  37. 37.
    M. Behera, R. Panda, R. Naik, Laser induced Te diffusion in amorphous As50Se50 thin films probed by FTIR and XPS. Indian J. Phys. 91, 555, (2017)ADSCrossRefGoogle Scholar
  38. 38.
    P. Nemec, M. Frumar, M. Stabl, et al. Structure, thermally and optically induced effects in amorphous As2Se3 films prepared by pulsed laser deposition. J. Phys. Chem. Solids 65, 1253 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    R. Naik, R. Ganesan, K.S. Sangunni, Optical properties change in amorphous (As2S3)0.87 Sb 0.13 thin films by photo and thermal induced process. Mater. Chem. Phys. 125, 505 (2011)CrossRefGoogle Scholar
  40. 40.
    S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B. 3, 1338 (1971)ADSCrossRefGoogle Scholar
  41. 41.
    R. Naik, R. Ganesan, Effect of compositional variations on the optical properties of SbxSe60–xS40 thin films. Thin Solid Films. 579, 95 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    L.A. Wahab, H.H. Amer, Composition dependence of optical constants of Ge1−xSe2Pbx thin films. Mater. Chem. Phys. 100, 430 (2006)CrossRefGoogle Scholar
  43. 43.
    M. Ahmad, P. Kumar, R. Thangaraj, Effect of isoelectronic substitution of Bi on the photoelectrical properties in amorphous. Sn–Sb–Se films. 517, 5965 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    J. Tauc, Amorphous and Liquid Semiconductors. (Plenum Press, NewYork, 1979)Google Scholar
  45. 45.
    A.R. Zanatta, I. Chambouleyron, Absorption edge, band tails, and disorder of amorphous semiconductors. Phys. Rev. B. 53, 03833 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    P. Nagels, L. Tichy, A. Tiska et al., Electrical properties of glasses in the Ge- Bi-Sb- Se and Ge- Bi- S systems. J. Non Cryst. Solids. 59–60, 1015 (1983)CrossRefGoogle Scholar
  47. 47.
    N.F. Mott, E.A. Davis, Electronics Processes in Non-crystalline Materials (Clarendon, Oxford, 1979), p. 428Google Scholar
  48. 48.
    T.T. Nang, M. Okuda, T. Matsushita, et al. Electrical and optical properties of GexSe1−x amorphous thin films. Jpn. J. Appl. Phys. 14, 849 (1976)ADSCrossRefGoogle Scholar
  49. 49.
    J.D. Dow, D. Redfield, Electro absorption in semiconductors: the excitonic absorption edge. Phys. Rev. B. 1, 3358 (1970)ADSCrossRefGoogle Scholar
  50. 50.
    R. El Ghrandi, J. Calas, G. Galibert, M. Averous, Silver photo dissolution in amorphous chalcogenide thin films. Thin Solid films. 218, 259–273 (1992)ADSCrossRefGoogle Scholar
  51. 51.
    M. Malyovanik, S. Ivan, A. Csik et al., Laser-induced optical changes in amorphous multilayers. J. Appl. Phys. 93, 139 (2003)ADSCrossRefGoogle Scholar
  52. 52.
    M. Behera, R. Naik, Optical properties change in laser-induced Te/As2Se3 chalcogenide thin films. Appl. Phys. A 122, 913 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)ADSCrossRefGoogle Scholar
  54. 54.
    H.E. Atyiaa, N.A. Hegab, Optical spectroscopy and dispersion parameters of Ge15Se60X25 (X = As or Sn) amorphous thin films, Eur. Phys. J. Appl. Phys. 63, 10301 (2013)ADSCrossRefGoogle Scholar
  55. 55.
    E.R. Shaaban, M.A. Kaid, E.L.S. Moustafa,et al, Effect of compositional variations on the optical properties of Sb–Ge–Se thin films. Appl. Phys. 41, 125301 (2008)Google Scholar
  56. 56.
    K. Petkov, R. Todorov, J. Tasseva et al., Structure, linear and non-linear optical properties of thin AsxSe1–x films. J. Optoelectron. Adv. Mater. 11, 2083–2093 (2011)Google Scholar
  57. 57.
    R. Naik, R. Ganesan, K.S. Sangunni, Compositional dependence on the optical properties of amorphous As2−xS3−xSbx thin films. Thin Solid Films 518, 5437 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    R.B. Tokas, S. Jena, P. Sarkar et al., Oblique angle deposition of HfO2 thin films: quantitative assessment of indentation modulus and micro structural properties. Mater. Res. Express. 2, 035010 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    S. Jena, R. Tokas, D. Kompalli et al., Annealing effects on microstructure and laser-induced damage threshold of HfO2/SiO2 multilayer mirrors. Appl. Opt. 55(22), 6108–6114 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsUtkal UniversityBhubaneswarIndia
  2. 2.Central Institute of Plastic Engineering and TechnologyBhubaneswarIndia
  3. 3.Department of PhysicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations