Advertisement

Applied Physics A

, 124:262 | Cite as

A new family of carbon materials with exceptional mechanical properties

  • Jiajia Ran
  • Kunpeng Lin
  • Haotian Yang
  • Jianlin Li
  • Lianjun Wang
  • Wan Jiang
Rapid communication
  • 149 Downloads

Abstract

A new family of carbon materials with ultrahigh-strength and nano-onion grains has been successfully produced from nano-diamond particles by spark plasma sintering. It is believed that the spark plasma and applied pressure help overcome the difficulties in densification. Also diamond has a much greater density than that of graphite, leading to the volume expansion when nano-diamond particles transform to graphite onions during heating, facilitating the consolidation. The as-prepared bulk graphite with a density of 1.84 g/cm3 has ultrahigh bending strength, modulus and microhardness, 150 MPa, 31.3 GPa and 2.6 GPa, respectively, due to the unique microstructure of nano-graphite onions.

Notes

Acknowledgements

The authors would like to thank the State Key Laboratory of Marine Resource Utilization in South China Sea for the funding support (2016011).

References

  1. 1.
    K. Miyazaki, T. Hagio, K. Kobayashi, J. Mater. Sci. 16, 752 (1981)ADSCrossRefGoogle Scholar
  2. 2.
    A.N. Jones, G.N. Hall, M. Joyce, A. Hodgkins, K. Wen, T.J. Marrow, B.J. Marsden, J. Nucl. Mater. 381, 152 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    M. Inagaki, F. Kang, M. Toyoda, H. Konno, in Advances in Materials Science and Engineering Carbon, Chapter 17—Isotropic High-density Graphite and Nuclear Applications (Butterworth-Heinemann, Boston, 2014), pp. 387–410Google Scholar
  4. 4.
    K. Shen, Z.H. Huang, W. Shen, J. Yang, G. Yang, S. Yu, F. Kang, Carbon 94, 18 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Tojo, TANSO 234, 234 (2008)CrossRefGoogle Scholar
  6. 6.
    J.L. Li, G.Z. Bai, J.W. Feng, W. Jiang, Carbon 43, 2649 (2005)CrossRefGoogle Scholar
  7. 7.
    J.L. Li, L.J. Wang, T. He, W. Jiang, Carbon 45, 2636 (2007)CrossRefGoogle Scholar
  8. 8.
    S. Tomita, T. Sakurai, H. Ohta, M. Fujii, S. Hayashi, J. Chem. Phys. 114, 7477 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    S. Tomita, A. Burian, J.C. Dore, D. LeBolloch, M. Fujii, S. Hayashi, Carbon 40, 1469 (2002)CrossRefGoogle Scholar
  10. 10.
    Z. Qiao, J. Li, N. Zhao, C. Shi, P. Nash, Scr. Mater. 54, 225 (2006)CrossRefGoogle Scholar
  11. 11.
    V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, Nat. Nanotechnol. 7, 11 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Lin, X. Pan, W. Qi, B. Zhang, D.S. Su, J. Mater. Chem. A 2, 12475 (2014)CrossRefGoogle Scholar
  13. 13.
    A. Krueger, J. Mater. Chem. 18, 1485 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Morita, T. Takimoto, H. Yamanaka, K. Kumekawa, S. Marino, S. Aonuma, T. Kimura, N. Komatsu, Small 4, 2154 (2008)CrossRefGoogle Scholar
  15. 15.
    P.A. Bianconi, S.J. Joray, B.L. Aldrich, J. Sumranjit, D.J. Duffy, D.P. Long, J.L. Lazorcik, L. Raboin, J.K. Kearns, S.L. Smulligan, J.M. Babyak, J. Am. Chem. Soc. 126, 3191 (2004)CrossRefGoogle Scholar
  16. 16.
    B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley Publ. Co., Reading, 1978), p. 100Google Scholar
  17. 17.
    Z. Qiao, J. Li, N. Zhao, C. Shi, P. Nash, Chem. Phys. Lett. 429, 479 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    A.C. Ferrari, J. Robertson, Phys. Rev. B. 61, 14095 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    M. Choucair, P. Thordarson, J.A. Stride, Nat. Nanotechnol. 4, 30 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    C. He, N. Zhao, C. Shi, X. Du, J. Li, L. Cui, J. Alloys Compd. 425, 329 (2006)CrossRefGoogle Scholar
  21. 21.
    D. Roy, M. Chhowalla, H. Wang, N. Sano, I. Alexandrou, T.W. Clyne, G.A.J. Amaratunga, Chem. Phys. Lett. 373, 52 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    M. Choucair, J.A. Stride, Carbon 50, 1109 (2012)CrossRefGoogle Scholar
  23. 23.
    O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, M. Herrmann, Adv. Eng. Mater. 16, 830 (2014)CrossRefGoogle Scholar
  24. 24.
    K.N.P. Kumar, K. Keizer, A.J. Burggraaf et al., Densification of nanostructured titania assisted by a phase transformation [J]. Nature 358(6381), 48–51 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    W.Q. Feng, W. Wang, S.H. Meng, C.H. Xu, W.H. Xie, Equip. Environ. Eng. 13, 18 (2016)Google Scholar
  26. 26.
    B. Wang, W.D. Yin, M.H. Wang, D.X. Liu, J. Synth. Cryst. 44, 127 (2015)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Ministry of Education of the Tropical Island Resources, School of Materials and Chemical EngineeringHainan UniversityHaikouChina
  2. 2.School of Materials Science and EngineeringDonghua UniversityShanghaiChina

Personalised recommendations