Applied Physics A

, 124:271 | Cite as

Synthesis of homogeneous CaMoO4 microspheres with nanopits for high-capacity anode material in Li-ion battery

  • Jiangfeng You
  • Ling Xin
  • Xiao Yu
  • Xiang Zhou
  • Yong Liu
Article
  • 64 Downloads

Abstract

Homogeneous CaMoO4 microspheres with interesting nanopit morphology were prepared by a simple one-step hydrothermal method. These microspheres had a very promising alternative structure for application in Li-ion batteries (LIBs), because they combined the advantages of both the primary nanosized and secondary microsized structures. The nanopits distributed on CaMoO4 material can accommodate volume change, increase their contacting surface and wetting property with electrolyte, and improve wetting contact between CaMoO4 material and electrolyte, leading to enhanced cycling stability and electrochemical performance. Meanwhile, the robust microsphere structure can both prevent aggregation and provide high tap density. When used as an anode in LIBs, the electrodes delivered a high discharge capacity of 434 mAh/g after 50 charge–discharge cycles at a current density of 200 mA/g, showing good cycling performance.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51772337), the Natural Science Foundation of Guangdong Province (S2012020011003), and the Fundamental Research Funds for the Central Universities (16lgjc60).

Supplementary material

339_2018_1689_MOESM1_ESM.docx (913 kb)
Supplementary material 1 (DOCX 913 KB)
339_2018_1689_MOESM2_ESM.nda (10.9 mb)
Supplementary material 2 (NDA 11112 KB)

References

  1. 1.
    S. Xu, C.M. Hessel, H. Ren, R. Yu, Q. Jin, M. Yang, H. Zhao, D. Wang, α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ. Sci. 7(2), 632–637 (2014)CrossRefGoogle Scholar
  2. 2.
    F. Zhou, S. Xin, H.W. Liang, L.T. Song, S.H. Yu, Carbon nanofibers decorated with molybdenum disulfide nanosheets: synergistic lithium storage and enhanced electrochemical performance. Angew. Chem. Int. Ed. 53(43), 11552–11556 (2014)CrossRefGoogle Scholar
  3. 3.
    F.X. Ma, H. Hu, H.B. Wu, C.Y. Xu, Z. Xu, L. Zhen, X.W. Lou, Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties. Adv. Mater. 27(27), 4097–4101 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, A. Yu, Nanostructured transition metal oxides as advanced anodes for lithium-ion batteries. Sci. Bull. 60(9), 823–838 (2015)CrossRefGoogle Scholar
  5. 5.
    Y. Zhou, Y. Liu, W. Zhao, H. Wang, B. Li, X. Zhou, H. Shen, Controlled synthesis of series NixCo3–xO4 products: morphological evolution towards quasi-single-crystal structure for high-performance and stable lithium-ion batteries. Sci. Rep. 5, 11584 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    C. Yuan, H.B. Wu, Y. Xie, X.W.D. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014)CrossRefGoogle Scholar
  7. 7.
    Y.N. Ko, Y.C. Kang, S.B. Park, Superior cycling and rate performances of rattle-type CoMoO4 microspheres prepared by one-pot spray pyrolysis. RSC Adv. 4(34), 17873–17878 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Xue, W. Hong, Z. Pan, W. Jin, H. Zhao, Y. Song, J. Zhou, Y. Liu, Enhanced electrochemical performance of ZnMoO4/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochim. Acta. 222, 838–844 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Zhao, X. Li, B. Yan, D. Xiong, D. Li, S. Lawes, X. Sun, Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy. Mater. 6(8), 1502175 (2016)CrossRefGoogle Scholar
  10. 10.
    T. Yang, H. Zhang, L. Mei, D. Guo, Q. Li, T. Wang, Enhanced electrochemical performance of CoMoO4 nanorods/reduced graphene oxide as anode material for lithium-ion batteries. Electrochim. Acta. 158, 327–332 (2015)CrossRefGoogle Scholar
  11. 11.
    X. Ma, W. Zhao, J. Wu, X. Jia, Preparation of flower-like BaMoO4 and application in rechargeable lithium and sodium ion batteries. Mater. Lett. 188, 248–251 (2017)CrossRefGoogle Scholar
  12. 12.
    J. Fei, Q. Sun, J. Li, Y. Cui, J. Huang, W. Hui, H. Hu, Synthesis and electrochemical performance of α-ZnMoO4 nanoparticles as anode material for lithium ion batteries. Mater. Lett. 198, 4–7 (2017)CrossRefGoogle Scholar
  13. 13.
    N.N. Leyzerovich, K.G. Bramnik, T. Buhrmester, H. Ehrenberg, H. Fuess, Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe). J. Power Sources. 127(1), 76–84 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Liang, X. Han, Z. Yi, W. Tang, L. Zhou, J. Sun, S. Yang, Y. Zhou, Synthesis, characterization and lithium-intercalation properties of rod-like CaMoO4 nanocrystals. J. Solid State Electrochem. 11(8), 1127–1131 (2007)CrossRefGoogle Scholar
  15. 15.
    S.P. Culver, F.A. Rabuffetti, S. Zhou, M. Mecklenburg, Y. Song, B.C. Melot, R.L. Brutchey, Low-temperature synthesis of AMoO4 (A = Ca, Sr, Ba) scheelite nanocrystals. Chem. Mater. 25(20), 4129–4134 (2013)CrossRefGoogle Scholar
  16. 16.
    N. Sharma, K.M. Shaju, G.V. Subba Rao, B.V. Chowdari, Z.L. Dong, T.J. White, Carbon-coated nanophase CaMoO4 as anode material for Li ion batteries. Chem. Mater. 16(3), 504–512 (2004)CrossRefGoogle Scholar
  17. 17.
    X. Zhao, M. Cao, C. Hu, Thermal oxidation synthesis hollow MoO3 microspheres and their applications in lithium storage and gas-sensing. Mater. Res. Bull. 48(6), 2289–2295 (2013)CrossRefGoogle Scholar
  18. 18.
    J.K. Kim, J.H. Kim, Y.C. Kang, Electrochemical properties of multicomponent oxide and selenide microspheres containing Co and Mo components with several tens of vacant nanorooms synthesized by spray pyrolysis. Chem. Eng. J. 333, 665–677 (2018)CrossRefGoogle Scholar
  19. 19.
    Z. Li, X. Yu, Y. Liu, W. Zhao, H. Zhang, R. Xu, H. Shen, Reconstructing ZnO quantum dot assembled tubular structures from nanotubes within graphene matrix via ongoing pulverization towards high-performance lithium storage. J. Mater. Chem. A. 4(48), 19123–19131 (2016)CrossRefGoogle Scholar
  20. 20.
    H. Younes, K. Garleb, S. Behr, C. Rémésy, C. Deminge, Fermentable fibers or oligosaccharides reduce urinary nitrogen excretion by increasing urea disposal in the rat cecum. J. Nutr. 125(4), 1010 (1995)Google Scholar
  21. 21.
    A.A. Al-Majed, A.M. Mostafa, A.C. Al-Rikabi, O.A. Al-Shabanah, Protective effects of oral arabic gum administration on gentamicin-induced nephrotoxicity in rats. Pharmacol. Res. 46(5), 445–451 (2002)CrossRefGoogle Scholar
  22. 22.
    K.K. Gangu, G.R. Tammineni, A.S. Dadhich, S.B. Mukkamala, Control of phase and morphology of calcium oxalate crystals by natural polysaccharide, gum Arabic. Mol. Cryst. Liq. Cryst. 591(1), 114–122 (2014)CrossRefGoogle Scholar
  23. 23.
    B.P. Singh, A.K. Parchur, R.S. Ningthoujam, A.A. Ansari, P. Singh, S.B. Rai, Influence of Gd3+ co-doping on structural property of CaMoO4: Eu nanoparticles. Dalton T. 43(12), 4770–4778 (2014)CrossRefGoogle Scholar
  24. 24.
    H.N. Im, M.B. Choi, S.Y. Jeon, S.J. Song, Structure, thermal stability and electrical conductivity of CaMoO4+ δ. Ceram. Int. 37(1), 49–53 (2011)CrossRefGoogle Scholar
  25. 25.
    X. Wu, J. Du, H. Li, M. Zhang, B. Xi, H. Fan, Y. Qian, Aqueous mineralization process to synthesize uniform shuttle-like BaMoO4 microcrystals at room temperature. J. Solid State Chem. 180(11), 3288–3295 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    H. Wang, L. Sun, H. Wang, L. Xin, Q. Wang, Y. Liu, L. Wang, Rutile TiO2 mesocrystallines with aggregated nanorod clusters: extremely rapid self-reaction of the single source and enhanced dye-sensitized solar cell performance. RSC Adv. 4(102), 58615–58623 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science. 304(5671), 711–714 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    J.H. Cha, S.M. Kwon, J.A. Bae, S.H. Yang, C.W. Jeon, Effect of the deposition process of window layers on the performance of CIGS solar cells. J. Alloys Compd. 708, 562–567 (2017)CrossRefGoogle Scholar
  29. 29.
    C.T. Cherian, M.V. Reddy, S.C. Haur, B.V.R. Chowdari, Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl. Mater. Inter. 5(3), 918–923 (2013)CrossRefGoogle Scholar
  30. 30.
    D. Wang, J. Yang, X. Li, D. Geng, R. Li, M. Cai, T. Sham, X. Sun, Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ. Sci. 6(10), 2900–2906 (2013)CrossRefGoogle Scholar
  31. 31.
    F. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. Zeng, Y. Jiang, Y. Huang, MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries. Adv. Mater. 26(38), 6622–6628 (2014)CrossRefGoogle Scholar
  32. 32.
    L.H.H. Zhong, X. Zheng, Y. Huang, P. Zhang, Q. Chen, CoMn2O4 spinel hierarchical microspheres assembled with porous nanosheets as stable anodes for lithium-ion batteries. Sci. Rep. 2, 986 (2012)CrossRefGoogle Scholar
  33. 33.
    J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin, Beyond intercalation-based li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22(35), E170-E192 (2010)CrossRefGoogle Scholar
  34. 34.
    C. Wang, Q. Li, F. Wang, G. Xia, R. Liu, D. Li, G. Wu, Morphology-dependent performance of CuO anodes via facile and controllable synthesis for lithium-ion batteries. ACS Appl. Mater. Inter. 6(2), 1243–1250 (2014)CrossRefGoogle Scholar
  35. 35.
    Y. Wang, Y. Zhu, Z. Xing, Y. Qian, Hydrothermal synthesis of α-MoO3 and the influence of later heat treatment on its electrochemical properties. Int. J. Electrochem. Sci. 8, 9851–9857 (2013)Google Scholar
  36. 36.
    Y.L. Ding, J. Xie, G.S. Cao, T.J. Zhu, H.M. Yu, X.B. Zhao, Single-crystalline LiMn2O4 nanotubes synthesized via template-engaged reaction as cathodes for high-power lithium ion batteries. Adv. Funct. Mater. 21(2), 348–355 (2011)CrossRefGoogle Scholar
  37. 37.
    G. Ning, B. Haran, B.N. Popov, Capacity fade study of lithium-ion batteries cycled at high discharge rates. J. Power Sources. 117(1–2), 160–169 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations