Applied Physics A

, 124:277 | Cite as

CdTe quantum-dot-modified ZnO nanowire heterostructure

  • Kanchana Shahi
  • R. S. Singh
  • Ajaya Kumar Singh
  • Mariya Aleksandrova
  • Rabah Khenata


The effect of CdTe quantum-dot (QD) decoration on the photoluminescence (PL) behaviour of ZnO nanowire (NW) array is presented in the present work. Highly crystalline and vertically 40–50 nm diameter range and 1 µm in length aligned ZnO NWs are synthesized using low-cost method. The crystallinity and morphology of the NWs are studied by scanning electron microscopy and X-ray powder diffraction methods.Optical properties of the nanowires are studied using photo-response and PL spectroscopy. CdTe QDs are successfully synthesized on ZnO nanowire surface by dip-coating method. ZnO NWs are sensitized with CdTe QDs characterized by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and PL spectroscopy. The highly quenched PL intensity indicates the charge transfer at interface between CdTe QDs and ZnO NWs and is due to the formation of type-II heterostructure between QDs and NWs. Photo-response behaviour of heterostructure of the film is also been incorporated in the present work.



A portion of this research was performed using facilities at CeNSE, funded by Ministry of Electronics and Information Technology (MeitY), Govt. of India, and located at the Indian Institute of Science, Bengaluru.


  1. 1.
    A. Janotti, C.G. Van de Walle, Rep. Progress Phys. 72, 126501 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    M. Willander, O. Nur, Q.X. Zhao, L.L. Yang, M. Lorenz, B.Q. Cao, J.Zuniga Pérez, C. Czekalla, G. Zimmermann, M.Grundmann,A. Bakin, A. Behrends, M. Al-Suleiman, A. El-Shaer, A. Che Mofor, B. Postels, A. Waag, N. Boukos, A. Travlos, H.S. Kwack, J. Guinard, D Le Si Dang, Nanotechnology, 20, 332001 (2009)CrossRefGoogle Scholar
  3. 3.
    Z.L. Wang, Mater. Today. 7, 26 (2004)CrossRefGoogle Scholar
  4. 4.
    U. Ozgur, Y.I. Alivov, C. Liu, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, J. Appl. Phys. Lett. 98, 1 (2005)Google Scholar
  5. 5.
    J.W.P. Hsu, D.R. Tallant, R.L. Simpson, N.A. Missert, R.G. Copeland, Appl. Phys. Lett. 88, 252103 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    X. Wang, J. Song, Z.L. Wang, J. Mater. Chem. 17, 711–720 (2007)CrossRefGoogle Scholar
  7. 7.
    C. Wang, B. Mao, E. Wang, Z. Kang, C. Tian, Solid State Commun., 11, 141, (2007)Google Scholar
  8. 8.
    L. Wang, K. Chen, L. Dong, J. Phys. Chem. C., 114(41) (2010)Google Scholar
  9. 9.
    L. Lu, J. Chen, L. Li, W. Wang, Nanoscale Res. Lett. 7, 293 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    J. Liu, Y.H. Ahn, J.Y. Park, K.H. Koh, S. Lee, Nanotechnology, 20, 445203 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    J.J. Wu, S.C. Liu, C.T. Wu, K.H. Chen, Appl. Phys. Lett. 81, 1312 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    X. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    E. Kärber, T. Raadik, T. Dedova, J. Krustok, A. Mere, V. Mikli, M. Krunks, Nanoscale Res. Lett.6:359 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    W. Lee, H.G. Sohn, J.M. Myoung, Mater. Sci. Forum. 449, 1245 (2004)CrossRefGoogle Scholar
  15. 15.
    Z.H. Ibupoto, K. Khun, M. Eriksson, M. AlSalhi, M. Atif, A. Ansari, M. Willander, Materials. 6, 3584–3597 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    M. Kouhnavard, S. Ikeda, N.A. Ludin, N.B. Ahmad Khairudin, B.V. Ghaffari, M.A. Mat-Teridi, M.A. Ibrahim, S. Sepeai, K. Sopian, Renew. Sustain. Energy Rev. 37, 397–407 (2014)CrossRefGoogle Scholar
  17. 17.
    S. Shokhovets, O. Ambacher, G. Gobsch, Phys. Rev. B., 76, 125203 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    A.J. Breeze, Next Generation Thin-Film Solar Cells. In: Proceedings of 46th annual, IEEE international reliability physics symposium, pp. 168–171 (2008)Google Scholar
  19. 19.
    C.G. Van de Walle, J. Neugebauer, Nature. 423, 626–628 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    X.B. Cao, P. Chen, Y.J. Guo, J. Phys. Chem. C. 112, 20560–20566 (2008)CrossRefGoogle Scholar
  21. 21.
    R.S. Aga Jr., D. Jowhar, A. Ueda, Z. Pan, W.E. Collins, R. Mu, Appl. Phys. Lett. 91, 232108 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, Q. Li, ACS Nano. 4, 3302–3308 (2010)CrossRefGoogle Scholar
  23. 23.
    L. Li, S. Yang, W. Jing, Z. Jiang, F. Han, Sens. Actuators A. 232, 292–298 (2015)CrossRefGoogle Scholar
  24. 24.
    L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Angew. Chem. Int. Ed. 42, 3031–3034 (2003)CrossRefGoogle Scholar
  25. 25.
    K. Vanhusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A.Voigt, Appl. Phys. Lett. 68, 403 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    S. Dhara, P.K. Giri, J. Exp. Nanosci., 8, (3), 332–340 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kanchana Shahi
    • 1
  • R. S. Singh
    • 2
  • Ajaya Kumar Singh
    • 3
  • Mariya Aleksandrova
    • 4
  • Rabah Khenata
    • 5
  1. 1.Department of PhysicsGovt. V Y T P G Autonomous CollegeDurgIndia
  2. 2.Department of PhysicsGovt. L.C.S. Mahavidyalaya ChowkiRajnandgaonIndia
  3. 3.Department of ChemistryGovt. V Y T P G Autonomous CollegeDurgIndia
  4. 4.Department of MicroelectronicsTechnical University of SofiaSofiaBulgaria
  5. 5.Faculty of Sciences and TechnologyMascara UniversityMascaraAlgeria

Personalised recommendations