Skip to main content
Log in

Polarization-independent wide-angle ultrathin double-layered metamaterial absorber for broadband application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this letter, a polarization-independent broadband metamaterial absorber (MMA) for wide incidence angle is proposed. The MMA is composed of double-layer symmetric split rings connected with two orthogonally arranged bars and the ground metallic plane separated by two equal-sized substrates. The whole structure is with an ultra-thin thickness of 2.4 mm, which is 0.031\(\lambda\) corresponds to the lowest frequency of absorption peaks. Multiple metallic layers and multi-scalability are employed to provide broadband absorptivity based on the cooperated mechanisms of the Ohmic loss and the Fabry–Perot interference. A desirable absorption is achieved with double strong absorption peaks in 2–6 GHz and a broadband absorption in 10–24 GHz. The absorptivity can reach up to 100% with nearly all absorption peaks over 90%. The symmetry enables the MMA of satisfactory stability for polarization and incidence angles. Numerical and experimental results prove the capability of the proposed MMA for broadband absorbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Article  ADS  Google Scholar 

  2. S.A. Cummer, B.I. Popa, D. Schurig, D.R. Smith, J.B. Pendry, Full wave simulations of electromagnetic cloaking structures. Phys. Rev. E. 74, 036621 (2006)

    Article  ADS  Google Scholar 

  3. N.I. Zheludev, The road ahead for metamaterials. Science. 328, 582–583 (2010)

    Article  ADS  Google Scholar 

  4. M.H. Li, L.H. Yang, B. Zhou, X.P. Shen, Q. Cheng, T.J. Cui, Ultrathin multiband gigahertz metamaterial absorbers. J. Appl. Phys. 110(1), 014909 (2011)

    Article  ADS  Google Scholar 

  5. M.H. Luo, S. Shen, L. Zhou, S.L. Wu, Y. Zhou, L.S. Chen, Broadband, wide-angle, and polarization independent metamaterial absorber for the visible regime. Opt. Express. 25(14), 16715–16724 (2017)

    Article  ADS  Google Scholar 

  6. T. Cao, C.W. Wei, R.E. Simpson, L. Zhang, M.J. Cryan, Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity. Sci. Rep. 4(4463), 1–9 (2014)

    Google Scholar 

  7. N.I. Landy, S. Sajuyigbe, J.J. Mock, A perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    Article  ADS  Google Scholar 

  8. C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24, OP98–OP120 (2012)

    Google Scholar 

  9. Y. Ra’di, C.R. Simovski, S.A. Tretyakov, Thin perfect absorbers for electromagnetic waves: theory, design, and realizations. Phys. Rev. Applied. 3, 037001 (2015)

    Article  ADS  Google Scholar 

  10. G.R. Keiser et al., Terahertz saturable absorption in superconducting metamaterials. JOSA B. 33(12), 2649–2655 (2016)

    Article  ADS  Google Scholar 

  11. M. Wu et al., A three-dimensional all-metal terahertz metamaterial perfect absorber. Appl. Phys. Lett. 111(5), 051101 (2017)

    Article  ADS  Google Scholar 

  12. W.H. Emerson, Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans. Antennas Propag. AP-23(4), 484–490 (1973)

    Article  ADS  Google Scholar 

  13. R.L. Fante, M.T. Mccormack, Reflection properties of the salisbury screen. IEEE Trans. Antennas Propag. 36, 1443–1454 (1988)

    Article  ADS  Google Scholar 

  14. W. Yuan, Q. Chen, Y.S. Xu, H.B. Xu, S.W. Bie, J.J. Jiang, Broadband microwave absorption properties of ultrathin composites containing edge-split square-loop FSS embedded in magnetic sheets. IEEE Antennas Wireless Propag. Lett. 16, 278–281 (2017)

    Article  ADS  Google Scholar 

  15. L. Sun, H. Cheng, Y. Zhou, J. Wang, Design of a lightweight magnetic radar absorber embedded with resistive FSS. IEEE Antennas Wireless Propag. Lett. 11, 675–678 (2012)

    Article  ADS  Google Scholar 

  16. T.W. Deng, Z.W. Li, M.J. Chua, Z.N. Chen, Broadband and ultrathin frequency-dispersive metamaterial screen for reflectivity reduction. IEEE Trans. Antennas Propag. 63(9), 4156–4160 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A.H. Panaretos, D.E. Brocker, D.H. Werner, Ultra-thin absorbers comprised by cascaded high-impedance and frequency selective surfaces. IEEE Antennas Wireless Propag. Lett. 14, 1089–1092 (2015)

    Article  ADS  Google Scholar 

  18. N.I. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Design, theory, measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B. 79(12), 125104 (2009)

    Article  ADS  Google Scholar 

  19. M. Yoo, H.K. Kim, S. Lim, Angular- and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology. IEEE Antennas Wireless Propag. Lett. 15, 414–417 (2016)

    Article  ADS  Google Scholar 

  20. N. Mishra, D.K. Choudhary, R. Chowdhury, K. Kumari, R.K. Chaudhary, An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications. IEEE Access. 5, 4370–4376 (2017)

    Article  Google Scholar 

  21. J. Sun, L. Liu, G. Dong, L. Zhou, An extremely broadband metamaterial absorber based on destructive interference. Opt. Express. 19(22), 21155–21162 (2011)

    Article  ADS  Google Scholar 

  22. Y.L. Liao, Y. Zhao, A wide-angle dual-band polarization sensitive absorber with multilayer grating. Phys. Lett. B. 28(14), 1450109 (2014)

    Google Scholar 

  23. H. Xiong, J.S. Hong, C.M. Luo, L.L. Hong, An ultrathin and broadband metamaterial absorber using multi-layer structures. J. Appl. Phys. 114(6), 064109 (2013)

    Article  ADS  Google Scholar 

  24. W.Q. Zuo, Y. Yang, X.X. He, D.W. Zhan, Q.F. Zhang, A miniaturized metamaterial absorber for ultrahigh-frequency RFID system. IEEE Antennas Wireless Propag. Lett. 16, 329–332 (2017)

    Article  ADS  Google Scholar 

  25. Y. Han, W. Che, Low-profile broadband absorbers based on capacitive surfaces. IEEE Antennas Wireless Propag. Lett. 16, 74–78 (2017)

    Article  ADS  Google Scholar 

  26. J.L. Li, J.J. Jiang, Y. He, W.H. Xu, M. Chen, L. Miao, S.W. Bie, Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface. IEEE Antennas Wireless Propag. Lett. 15, 774–777 (2016)

    Article  ADS  Google Scholar 

  27. C. Mias, J.H. Yap, A varactor-tunable high impedance surface with a resistive-lumped-element biasing grid. IEEE Trans. Antennas Propag. 55(7), 1955–1962 (2007)

    Article  ADS  Google Scholar 

  28. Y.F. Fan, H.C. Zhang, J.Y. Yin, L.X. Xu, D.S. Nagarkoti, Y. Hao, T.J. Cui, An active wideband and wide-angle electromagnetic absorber at microwave frequencies. IEEE Antennas Wireless Propag. Lett. 15, 1913–1916 (2016)

    Article  ADS  Google Scholar 

  29. S. Ghosh, S. Bhattacharyya, K.V. Srivastava, Bandwidth-enhancement of an ultrathin polarization insensitive metamaterial absorber. Microwave Opt. Technol. Lett. 56, 350–355 (2014)

    Article  Google Scholar 

  30. S. Bhattacharyya, S. Ghosh, K.V. Srivastava, Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J. Appl. Phys. 114, 094514 (2013)

    Article  ADS  Google Scholar 

  31. S. Ghosh, S. Bhattacharyya, D. Chaurasiya, K.V. Srivastava, Polarisation-insensitive and wide-angle multi-layer metamaterial absorber with variable bandwidths. Electron. Lett. 51(14), 1050–1052 (2015)

    Article  Google Scholar 

  32. S. Bhattacharyya, S. Ghosh, D. Chaurasiya, K.V. Srivastava, Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl. Phys. A. 118, 207–215 (2015)

    Article  ADS  Google Scholar 

  33. F. Costa, A. Monorchio, G. Manara, Analysis and design of ultra-thin electromagnetic absorbers comprising resistively loaded high impedance surfaces. IEEE Trans. Antennas Propag. 58(5), 1551–1558 (2010)

    Article  ADS  Google Scholar 

  34. W. Li, X. Qiao, Y. Luo, F.X. Qin, H.X. Peng, Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism. Appl. Phys. A. 115(1), 229–234 (2014)

    Article  ADS  Google Scholar 

  35. Y. Ra’di, V.S. Asadchy, S.U. Kosulnikov, M.M. Omelyanovich, D. Morits, A.V. Osipov, C.R. Simovski, S.A. Tretyakov, Full light absorption in single arrays of spherical nanoparticles. ACS Photon. 2, 653–660 (2015)

    Article  Google Scholar 

  36. M. Diem, T. Koschny, C.M. Soukoulis, Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B. 79, 033101 (2009)

    Article  ADS  Google Scholar 

  37. J. Grant, Y. Ma, S. Saha, L.B. Lok, A. Khalid, D.R.S. Cumming, Polarization insensitive terahertz metamaterial absorber. Opt. Lett. 36(8), 1524–1526 (2011)

    Article  ADS  Google Scholar 

  38. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E. 71, 036617 (2005)

    Article  ADS  Google Scholar 

  39. H.T. Chen, Interference theory of metamaterial perfect absorbers. Opt. Express. 20(7), 7165–7172 (2012)

    Article  ADS  Google Scholar 

  40. D.A. Powell, M. Lapine, M.V. Gorkunov, I.V. Shadrivov, Y.S. Kivshar, Metamaterial tuning by manipulation of near-field interaction. Physical Review B. 82, 155128 (2010)

    Article  ADS  Google Scholar 

  41. H.A. Haus, W.P. Huang, Coupled-mode theory. Proc. IEEE 79, 1505–1518 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by National Natural Science Foundation of China under Grant (nos. 61671464, 61501494, 61271100, 61471389). All authors thank the reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Li Cong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cong, LL., Cao, XY., Song, T. et al. Polarization-independent wide-angle ultrathin double-layered metamaterial absorber for broadband application. Appl. Phys. A 124, 452 (2018). https://doi.org/10.1007/s00339-018-1686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1686-2

Navigation