Advertisement

Applied Physics A

, 124:257 | Cite as

Ultraviolet laser ablation as technique for defect repair of GaN-based light-emitting diodes

  • Thorsten Passow
  • Michael Kunzer
  • Alexander Pfeuffer
  • Michael Binder
  • Joachim Wagner
Article
Part of the following topical collections:
  1. COLA2017

Abstract

Defect repair of GaN-based light-emitting diodes (LEDs) by ultraviolet laser micromachining is reported. Percussion and helical drilling in GaN by laser ablation were investigated using 248 nm nanosecond and 355 nm picosecond pulses. The influence of laser ablation including different laser parameters on electrical and optical properties of GaN-based LED chips was evaluated. The results for LEDs on sapphire with transparent conductive oxide p-type contact on top as well as for thin-film LEDs are reported. A reduction of leakage current by up to six orders in magnitude and homogeneous luminance distribution after proper laser defect treatment were achieved.

Notes

Acknowledgements

The authors would like to thank S. Liu and R. Schmidt for valuable contributions. Financial support by the German Federal Ministry for Education and Research (BMBF) within the \(\mu \hbox {AFS}\) research cooperation (funding registration number 13N13285) is gratefully acknowledged.

References

  1. 1.
    C.M. Dunsky, Laser material processing in microelectronics manufacturing: status and near-term opportunities. Proc. SPIE 5713, 200–214 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    B.W. Baird, R.F. Hainsey, X. Peng, P.Y. Pirogovsky, Advances in laser processing of microelectronics. Proc. SPIE 6451, 64511K (2007)ADSCrossRefGoogle Scholar
  3. 3.
    B.W. Baird, Picosecond laser processing of semiconductor and thin film devices. Proc. SPIE 7580, 75800Q (2010)ADSCrossRefGoogle Scholar
  4. 4.
    G. Heise, M. Domke, J. Konrad, F. Pavic, M. Schmidt, H. Vogt, A. Heiss, J. Palm, H.P. Huber, Monolithical serial interconnects of large CIS solar cells with picosecond laser pulses. Phys. Procedia 12, 149 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    B. Gu, Ultrafast laser processing for next-generation memory repair. Proc. SPIE 5714, 37 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    M.D. Abbott, T. Trupke, H.P. Hartmann, R. Gupta, O. Breitenstein, Laser isolation of shunted regions in industrial solar cells. Prog. Photovolt. Res. Appl. 15, 613–620 (2007)CrossRefGoogle Scholar
  7. 7.
    J. Schmauder, R. Kopecek, R. Barinka, P. Barinkova, A. Bollar, D. Koumanakos, N. Otero, P. Romero, First steps towards an automated repairing of solar cells by laser enabled silicon post-processing, Proc. EU-PVSEC (2012)Google Scholar
  8. 8.
    J.-S. Chou, M.-Y. Cheng, Y.-W. Wu, Y. Tai, Predicting high-tech equipment fabrication cost with a novel evolutionary SVM inference model. Expert Syst. Appl. 38, 8571–8579 (2011)CrossRefGoogle Scholar
  9. 9.
    T. Chen, M.-T. Lin, K.-J. Chung, Linear energy control of laser drilling and its application in the repair of TFT-LCD bright pixels. Microsyst. Technol. 18, 1909–1915 (2012)CrossRefGoogle Scholar
  10. 10.
    V. Haerle, B. Hahn, S. Kaiser, A. Weimar, S. Bader, F. Eberhard, A. Plössl, D. Eisert, High brightness LEDs for general lighting applications Using the new ThinGaN\(^{\rm TM}\)-technology. Phys. Status Solidi A 201, 2736–2739 (2004)ADSGoogle Scholar
  11. 11.
    M.K. Kelly, R.P. Vaudo, V.M. Phanse, L. Gorgens, O. Ambacher, M. Stutzmann, Large free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff. Jpn. J. Appl. Phys. 38, L217 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    H. Daicho, T. Iwasaki, K. Enomoto, Y. Sasaki, Y. Maeno, Y. Shinomiya, S. Aoyagi, E. Nishibori, M. Sakata, H. Sawa, S. Matsuishi, H. Hosono, A novel phosphor for glareless white light-emitting diodes. Nat. Commun. 3, 1132 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    G. Lia, W. Wang, W. Yang, H. Wang, Epitaxial growth of group III-nitride films by pulsed laser deposition and their use in the development of LED devices. Surf. Sci. Rep. 70, 380–423 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    X. Luo, R. Hu, S. Liu, K. Wang, Heat and fluid flow in high-power LED packaging and applications. Prog. Energy Combust. Sci. 56, 1–32 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Grötsch, A. Pfeuffer, T. Liebetrau, H. Oppermann, M. Brink, R. Fiederling, I. Möllers, J. Moisel, Integrated high resolution LED light sources in an AFS/ADB head-lamp. In: Proceedings International Symposium on Automotive Lighting, pp. 241–250 (2015)Google Scholar
  16. 16.
    T. Liebetrau, W. Pohlmann, J. Moisel, R. Kürschner, A. Pfeuffer, A novel approach for high resolution LED pixel headlights. In: Proceedings Electronics in Vehicles, VDI-Berichte, vol 2249, pp. 265–276 (2015)Google Scholar
  17. 17.
    R. Moser, C. Goßler, M. Kunzer, K. Köhler, W. Pletschen, J. Brunne, U.T. Schwarz, J. Wagner, Laser direct writing of GaN-based light-emitting diodes—the suitable laser source for mesa definition. J. Appl. Phys. 113, 103107 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    R. Moser, M. Kunzer, C. Goßler, K. Köhler, W. Pletschen, U.T. Schwarz, J. Wagner, Laser processing of gallium nitride-based light-emitting diodes with ultraviolet picosecond laser pulses. Opt. Eng. 51, 114301 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    W. Wang, W. Yang, H. Wang, G. Li, Epitaxial growth of GaN films on unconventional oxide substrates. J. Mater. Chem. C 2, 9342–9358 (2014)CrossRefGoogle Scholar
  20. 20.
    J.-T. Oh, Y.-T. Moon, J.-H. Jang, J.-H. Eum, Y.-J. Sung, S.Y. Lee, J.-O. Song, T.-Y. Seong, High-performance GaN-based light emitting diodes grown on 8-inch Si substrate by using a combined low-temperature and high-temperature-grown AlN buffer layer. J. Alloys Compd. 732, 630–636 (2018)CrossRefGoogle Scholar
  21. 21.
    W. Wang, Y. Lin, W. Yang, Z. Liu, S. Zhiou, H. Qian, F. Gao, L. Wen, G. Li, A new system for achieving high-quality nonpolar m-plane GaN-based light-emitting diode wafers. J. Mater. Chem. C 2, 4112–4116 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fraunhofer-Institut für Angewandte Festkörperphysik IAFFreiburgGermany
  2. 2.Osram Opto Semiconductors GmbHRegensburgGermany

Personalised recommendations