Unidirectional threshold switching in Ag/Si-based electrochemical metallization cells for high-density bipolar RRAM applications
- 94 Downloads
Abstract
We herein present a novel unidirectional threshold selector for cross-point bipolar RRAM array. The proposed Ag/amorphous Si based threshold selector showed excellent threshold characteristics in positive field, such as high selectivity (~ 105), steep slope (< 5 mV/decade) and low off-state current (< 300 pA). Meanwhile, the selector exhibited rectifying characteristics in the high resistance state as well and the rectification ratio was as high as 103 at ± 1.5 V. Nevertheless, due to the high reverse current about 9 mA at − 3 V, this unidirectional threshold selector can be used as a selection element for bipolar-type RRAM. By integrating a bipolar RRAM device with the selector, experiments showed that the undesired sneak was significantly suppressed, indicating its potentiality for high-density integrated nonvolatile memory applications.
Notes
Acknowledgements
This work was supported in part by the National Science Foundation of China (11274343, 51761145025).
References
- 1.R. Waser, M. Aono, Nat. Mater. 6, 833–840 (2007)ADSCrossRefGoogle Scholar
- 2.I. Valov, R. Waser, J.R. Jameson, M.N. Kozicki, Nanotechnology 22, 254003 (2011)ADSCrossRefGoogle Scholar
- 3.C.S. Yang, D.S. Shang, Y.S. Chai, L.Q. Yan, B.G. Shen, Y. Sun, Phys. Chem. Chem. Phys. 19, 4190–4198 (2017)CrossRefGoogle Scholar
- 4.A.H. Khan, S. Ghosh, B. Pradhan, A. Dalui, L.K. Shrestha, S. Acharya, K. Ariga, Bull. Chem. Soc. Jpn. 90, 627–648 (2017)CrossRefGoogle Scholar
- 5.E.C. Demis, R. Aguilera, K. Scharnhorst, M. Aono, A.Z. Stieg, J.K. Gimzewski, Jpn. J. Appl. Phys. 55, 1102B2 (2016)CrossRefGoogle Scholar
- 6.Z.R. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J.P. Strachan, Z.Y. Li, Q. Wu, M. Barne, G.L. Li, H.L. Xin, R.S. Williams, Q.F. Xia, J.J. Yang, Nat. Mater. 16, 101–108 (2017)ADSCrossRefGoogle Scholar
- 7.K.H. Kim, S. Gaba, D. Wheeler, J.M. Cruz Albrecht, T. Hussain, N. Srinivasa, W. Lu, Nano Lett. 12, 389–395 (2012)ADSCrossRefGoogle Scholar
- 8.E. Linn, R. Rosezin, C. Kugeler, R. Waser, Nat. Mater. 9, 403–406 (2010)ADSCrossRefGoogle Scholar
- 9.B.S. Kang, S.-E. Ahn, M.-J. Lee, G. Stefanovich, K.H. Kim, W.X. Xianyu, C.B. Lee, Y. Park, I.G. Baek, B.H. Park, Adv. Mater. 20, 3066–3069 (2008)CrossRefGoogle Scholar
- 10.W. Lee, J. Park, S. Kim, J. Woo, J. Shin, G. Choi, S. Park, D. Lee, E. Cha, B.H. Lee, H. Hwang, ACS Nano 6, 8166–8172 (2012)CrossRefGoogle Scholar
- 11.K. Gopalakrishnan, R.S. Shenoy, C.T. Rettner, K. Virwani, D.S. Bethune, R.M. Shelby, G.W. Burr, A. Kellock, R.S. King, K. Nguyen, A.N. Bowers, M. Jurich, B. Jackson, A.M. Friz, T. Topuria, P.M. Rice, B.N. Kurdi, Novel Selector for High Density Non-Volatile Memory with Ultra-Low Holding Voltage and 107 On/Off Ratio, in Symp. on VLSI Tech. Dig. (2010), p. 205Google Scholar
- 12.M. Anbarasu, M. Wimmer, G. Bruns, M. Salinga, M. Wuttig, Appl. Phys. Lett. 100, 143505 (2012)ADSCrossRefGoogle Scholar
- 13.M. Son, J. Lee, J. Park, J. Shin, G. Choi, S. Jung, W. Lee, S. Kim, S. Park, H. Hwang, IEEE Electron Device Lett. 32, 1579–1581 (2011)ADSCrossRefGoogle Scholar
- 14.W. Chen, H.J. Barnaby, M.N. Kozicki, IEEE Electron Device Lett. 37, 580–583 (2016)ADSCrossRefGoogle Scholar
- 15.Y. Li, P. Yuan, L. Fu, R. Li, X. Gao, C. Tao, Nanotechnology 26, 391001 (2015)CrossRefGoogle Scholar
- 16.D. Liu, H. Cheng, G. Wang, X. Zhu, N. Wang, J. Appl. Phys. 114, 154906 (2013)ADSCrossRefGoogle Scholar
- 17.R. Midya, Z.R. Wang, J.M. Zhang, S.E. Savel’ev, C. Li, M.Y. Rao, M.H. Jang, S. Joshi, H. Jiang, P. Lin, K. Norris, N. Ge, Q. Wu, M. Barnell, Z.Y. Li, H.L.L. Xin, R.S. Williams, Q.F. Xia, J.J. Yang, Adv. Mater. 29, 1604457 (2017)CrossRefGoogle Scholar
- 18.J. Song, A. Prakash, D. Lee, J. Woo, E. Cha, S. Lee, H. Hwang, Appl. Phys. Lett. 107, 113504 (2015)ADSCrossRefGoogle Scholar
- 19.J. Song, J. Woo, A. Prakash, D. Lee, H. Hwang, IEEE Electron Device Lett. 36, 681–683 (2015)ADSCrossRefGoogle Scholar
- 20.J.J. Yang, M.X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Appl. Phys. Lett. 97, 232102 (2010)ADSCrossRefGoogle Scholar
- 21.J. Yoo, J. Woo, J. Song, H. Hwang, AIP Adv. 5, 127221 (2015)ADSCrossRefGoogle Scholar
- 22.K. Ariga, J.B. Li, J.B. Fei, Q.M. Ji, J.P. Hill, Adv. Mater. 28, 1251–1286 (2016)CrossRefGoogle Scholar
- 23.N. Onofrio, D. Guzman, A. Strachan, Nat. Mater. 14, 440–446 (2015)ADSCrossRefGoogle Scholar
- 24.H.X. Yang, M.H. Li, W. He, Y. Jiang, K.G. Lim, W.D. Song, V.Y.Q. Zhuo, C.C. Tan, E.K. Chua, W.J. Wang, Y. Yang, R. Ji, Highly-Scalablenovel Access Device Based on Mixed Ionic Electronic Conduction (MIEC) Materials for High Density Phase Change Memory (PCM) Arrays, in Symp. on VLSI Tech. Dig. (2015), p. T130Google Scholar
- 25.W. He, H.X. Yang, L. Song, K.J. Huang, R. Zhao, IEEE Electron Device Lett. 38, 172–174 (2017)ADSCrossRefGoogle Scholar
- 26.C.J. Amsinck, N.H. Di Spigna, D.P. Nackashi, P.D. Franzon, Nanotechnology 16, 2251–2260 (2005)ADSCrossRefGoogle Scholar
- 27.C.L. Lo, T.H. Hou, M.C. Chen, J.J. Huang, IEEE Trans. Electron Devices. 60, 420–426 (2013)ADSCrossRefGoogle Scholar