Advertisement

Applied Physics A

, 124:273 | Cite as

InP/ZnS quantum-dot-dispersed nematic liquid crystal illustrating characteristic birefringence and enhanced electro-optical parameters

  • Aradhana Roy
  • Govind Pathak
  • Jakub Herman
  • Sanjeev R. Inamdar
  • Atul Srivastava
  • Rajiv Manohar
Article
  • 188 Downloads

Abstract

The present study investigates the influence of InP/ZnS core/shell QDs on various parameters of Nematic LC sample 1832A, based on 4-(4-alkyl-cyclohexyl)benzene isothiocyanates and 4-(4-alkyl-cyclohexyl)biphenyl isothiocyanates. Observations recorded consist of distinguished functioning of birefringence phenomenon along with characteristic response time measurement. Further study of rotational viscosity and splay elastic constant portrays stupendous behavior strengthening the appositeness of the composites for low-charge consumable devices. The addition of 0.2 ml of core/shell QDs producing more than two times faster response and enhanced birefringence at low-temperature range can be employed in development of thermostable photonic devices. In addition, dielectric properties comprising of relative permittivity and conductivity have been reported supporting the outcome of the investigation in applicative LC-based technologies.

Notes

Acknowledgements

Authors are grateful to the Department of Science and Technology, (DST) and UPCST for Indo-Polish Project. Author A. Roy is thankful to UGC, New Delhi, India for the grant of BSR fellowship. Author R. Manohar is grateful to UGC, New Delhi, India for MID CAREER AWARD 2017.

References

  1. 1.
    P.J. Collings, Liquid Crystals: Nature’s Delicate Phase of Matter (Princeton University Press, Princeton, 1990)Google Scholar
  2. 2.
    S.P. Yadav, S. Singh Carbon nanotube dispersion in nematic liquid crystals: an overview. Prog. Mater. Sci. 80, 38–76 (2016)CrossRefGoogle Scholar
  3. 3.
    S.P. Yadav, R. Manohar, S. Singh, Effect of TiO2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal. Liq. Cryst. 42, 1095–1101 (2015)CrossRefGoogle Scholar
  4. 4.
    X. Li, N. Tan, M. Pivnenko, J. Sibik, J.A. Zeitler, D. Chu, High-birefringence nematic liquid crystal for broadband THz applications. Liq. Cryst. 43, 955–962 (2016)CrossRefGoogle Scholar
  5. 5.
    W.L. Chan, H.-T. Chen, A.J. Taylor, I. Brener, M.J. Cich, D.M. Mittleman, A spatial light modulator for terahertz beams. Appl. Phys. Lett. 94, 213511–213513 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Shiraishi, N. Toshima, K. Maeda, H. Yoshikawa, J. Xu, S. Kobayashi, Frequency modulation response of a liquid-crystal electro-optic device doped with nanoparticles. Appl. Phys. Lett. 81, 2845–2847 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    U.B. Singh, R. Dhar, R. Dabrowski, M.B. Pandey, Enchanced electro-optical properties of a nematic liquid crystals in presence of BaTiO3 nanoaprticles. Liq. Cryst. 41, 953–959 (2014)CrossRefGoogle Scholar
  8. 8.
    R. Dhar, A.S. Pandey, S. Kumar, R. Dabrowski, Optimization of the electrical parameters of nematic and discotic liquid crystalline materials due to the dispersion of nano particles, nano tubes and quantum dots for display and photovoltaic applications. in Nanotechnology: Advanced Materials, CNTs, Particles, Films and Composites, vol 1 (2013), pp. 542–545Google Scholar
  9. 9.
    S. Kumar, Chemistry of Discotic Liquid Crystals: From monomers to Polymers. (CRC Press, Boca Raton, 2010)CrossRefGoogle Scholar
  10. 10.
    J. Mirzaei, M. Reznikovb, T. Hegmann, Quantum dots as liquid crystal dopants. J. Mater. Chem. 22, 22350–22365 (2012)CrossRefGoogle Scholar
  11. 11.
    B. Kinkead, T. Hegmann, Effects of size, capping agent, and concentration of CdSe and CdTe quantum dots doped into a nematic liquid crystal on the optical and electro-optic properties of the final colloidal liquid crystal mixture. J. Mater. Chem. 20, 448–458 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Mirzaei, M. Urbanski, K. Yu, H.-S. Kitzerow, T. Hegmann, Nanocomposites of a nematic liquid crystal doped with mazic-sized CdSe quantum dots. J. Mater. Chem. 21, 12710–12716 (2011)CrossRefGoogle Scholar
  13. 13.
    A. Anczykowska, S. Bartkiewicz, M. Nyk, J. Mysliwiec, Enhanced photorefractive effect in liquid crystal structures co-doped with semiconductor quantum dots and metallic nanoparticles. Appl. Phys. Lett. 99, 19110–19113 (2011)CrossRefGoogle Scholar
  14. 14.
    E.A. Konshina, E.O. Garvish, A.O. Orlova, M.V. Artem’ev, Effect of dispersed CdSe/ZnS quantum dots on optical and electrical characteristics of Nematic liquid crystal cells. Tech. Phys. Lett. 37, 1011–1014 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    S. Haubold, M. Haase, A. Kornowski, H. Weller, Strongly luminescent InP/ZnS core–shell nanoparticles. Chemphyschem 2, 331–334 (2001)CrossRefGoogle Scholar
  16. 16.
    S. Pandey, T. Vimal, D.P. Singh, S.K. Gupta, P. Tripathi, C. Phadnis, S. Mahamuni, A. Srivastava, R. Manohar, Cd1-xZnxS/ZnS core/shell quantum dot ferroelectric liquid crystal composite system: analysis of faster optical response and lower operating voltage. Liq. Cryst. 41, 1811–1820 (2014)CrossRefGoogle Scholar
  17. 17.
    S.S. Gandhi, L.-C. Chein, High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals. Opt. Mater. 54, 300–305 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    S. Pandey, T. Vimal, D.P. Singh, S.K. Gupta, G. Pathak, R. Katiyar, R. Manohar, Core/shell quantum dots in ferroelectric liquid crystals matrix: effect of spontaneous polarisation coupling with dopant. Liq. Cryst. 43, 980–993 (2016)CrossRefGoogle Scholar
  19. 19.
    D.P. Singh, S. Pandey, S.K. Gupta, R. Manohar, A. Daoudi, A.H. Sahraoui, C. Phadnis, S. Mahamuni, Quenching of photoluminescence and enhanced contrast of ferroelectric liquid crystal dispersed with Cd1_xZnxS/ZnS core/shell nanocrystals. J. Lumin. 173, 250–256 (2016)CrossRefGoogle Scholar
  20. 20.
    S. Gao, C. Zhang, Y. Liu, H. Su, L. Wei, T. Huang, N. Dellas, S. Shang, S.E. Mohney, J. Wang, J. Xu, Lasing from colloidal InP/ZnS quantum dots. Opt. Express. 19(6), 5528–5535 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    T.-R. Kuo, S.-T. Hung, Y.-T. Lin, T.-L. Chou, M.-C. Kuo, Y.-P. Kuo, C. Chen, Green synthesis of InP/ZnS core/shell quantum dots for application in heavy-metal-free light-emitting diodes. Nanoscale Res. Lett. 12, 537 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    E. Ryu, S. Kim, E. Jang, S. Jun, H. Jang, B. Kim, S.-W. Kim, Step-wise synthesis of InP/ZnS core-shell quantum dots and the role of zinc acetate. Chem. Mater. 21(4), 2621–2623 (2009)CrossRefGoogle Scholar
  23. 23.
    R. Mazur, W. Piecek, Z. Raszewski, P. Morawiak, K. Garbat, O. Chojnowska, M.Mrukiewicz,M. Olifierczuk, J. Kedzierski, R. Dabrowski, D. Weglowska, Nematic liquid crystal mixtures for 3D active glasses application. Liq. Cryst. 44, 1–10 (2016)Google Scholar
  24. 24.
    G. Pathak, S. Pandey, R. Katiyar, A. Srivastava, R. Dabrowski, K. Garbat, R. Manohar, Analysis of photoluminescence, UV absorbance, optical band gap and threshold voltage of TiO2 nanoparticles dispersed in high birefringence nematic liquid crystal towards its application in display and photovoltaic devices. J. Lumin. 192, 33–39 (2017)CrossRefGoogle Scholar
  25. 25.
    G. Pathak, R. Katiyar, K. Agrahari, A. Srivastava, R. Dabrowski, K. Garbat, R. Manohar, Analysis of birefringence property of three different nematic liquid crystalsdispersed with TiO2 nanoparticles. Opto-Electron. Rev. 26, 11–18 (2018)CrossRefGoogle Scholar
  26. 26.
    H. Yang, P.H. Holloway, Enhanced photoluminescence from CdS:Mn/ZnS core/shell quantum dot. Appl. Phys. Lett. 82(12), 1965 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    H. Zhou, E.P. Choate, H. Wang, Optical Fredericks transition in a Nematic liquid crystal layer, in Liquid Crystalline Polymers as Tools for the Formation of Nanohybrids (2015), pp. 1–50Google Scholar
  28. 28.
    B.J. Frisken, P. Palffy-Muhoray, Freedericksz transitions in nematic liquid crystals: the effects of an in-plane electric field. Phys. Rev. A 40, 6099 (1989)ADSCrossRefGoogle Scholar
  29. 29.
    H.S. Mansur, Quantum dots and Nanocomposites. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 113–129 (2010)CrossRefGoogle Scholar
  30. 30.
    P.K. Tripathi, M. Pande, S. Singh Dielectric and electro-optical properties of polymer-stabilized liquid crystal. II. Polymer PiBMA dispersed in MBBA. Appl. Phys. A 122, 847, (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aradhana Roy
    • 1
  • Govind Pathak
    • 1
  • Jakub Herman
    • 2
  • Sanjeev R. Inamdar
    • 3
  • Atul Srivastava
    • 1
  • Rajiv Manohar
    • 1
  1. 1.Liquid Crystal Research Lab, Physics DepartmentUniversity of LucknowLucknowIndia
  2. 2.Institute of ChemistryMilitary University of TechnologyWarsawPoland
  3. 3.Department of PhysicsKarnatak UniversityDharwadIndia

Personalised recommendations