Advertisement

Applied Physics A

, 124:266 | Cite as

Performances and impedance spectroscopy of Small-molecule bulk heterojunction solar cells based on PtOEP: PCBM

  • A. A. Abuelwafa
  • M. Dongol
  • M. M. El-Nahass
  • T. Soga
Article

Abstract

Small-molecule bulk heterojunction (SBHJ) solar cells based on platinum octaethylporphyrin (PtOEP) as donor material and phenyl-C61-butyric acid methyl ester (PCBM) as the acceptor were fabricated using spin coating techniques with weight ratios from 1:0.1 to 1:9. The formation of charge transfer complex CTC in the PtOEP: PCBM blend was specified from the redshift of the PtOEP absorption peak after blending with PCBM. The photovoltaic performance for PtOEP: PCBM blends were investigated using the external quantum efficiency (EQE) besides the current density–voltage (J–V) characteristics under illumination100 mW/cm2 (AM1.5G). The BHJ solar cell with PtOEP: PCBM ratio of 1:9 exhibited the best performance. The impedance spectroscopy (IS) was examined in the frequency range from 25 Hz to 1 MHz. The equivalent circuit model was evaluated in details to evaluate the impedance spectroscopy parameters. Dielectric constant \({\varepsilon ^\prime }\), dielectric loss \({\varepsilon ^{\prime \prime }}\) and dielectric modulus were included and discussed in terms of dielectric polarization processes. Dielectric modulus displays the non-Debye relaxation in PtOEP: PCBM BHJ solar cells.

References

  1. 1.
    M. Tang, B. Sun, D. Zhou, Z. Gu, K. Chen, J. Guo, L. Feng, Y. Zhou, Org. Electron. 38, 213 (2016)CrossRefGoogle Scholar
  2. 2.
    N. Onojima, Y. Ishima, K. Takahashi, Thin Solid Films. 615, 385 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    S. Yamane, Y. Suzuki, T. Miyadera, T. Koganezawa, K. Arai, Y. Akiyama, M. Chikamatsu, Y. Yoshida, H. Suda, J. Mizukado, Sol. Energy Mater. Sol. Cells. 151, 96 (2016)CrossRefGoogle Scholar
  4. 4.
    T. Mahmoudi, S. Seo, H.-Y. Yang, W.-Y. Rho, Y. Wang, Y.-B. Hahn, Nano Energy. 28, 179 (2016)CrossRefGoogle Scholar
  5. 5.
    M.M. Chowdhury, M.K. Alam, Sol. Energy. 126, 64 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Nat.Commun. 5, 5293 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J.W. Jung, Dyes Pigm. 137, 512 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Fan, G. Chen, L. Jiang, j Yuan, Y. Zou, Chem. Phys. 493, 77 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    H. Qi, X. Xu, Q. Tao, Y. Zhang, M. Zhu, W. Zhu, Q. Peng, Y. Liao, Dyes Pigm. 142, 406 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Liang, L. Xiao, C. Liu, K. Gao, H. Qin, Y. Cao, X. Peng, Org. Electron. 29, 127 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Liu, T. Zhang, Q. Zeng, Z. Wu, L. Piao, S. Zhao, RSC Adv. 3, 13259 (2013)CrossRefGoogle Scholar
  12. 12.
    A.A. Abuelwafa, A. El-Denglawey, M. Dongol, M.M. El-Nahass, T. Soga, J. Alloy. Compd. 655, 415 (2016)CrossRefGoogle Scholar
  13. 13.
    A.A. Abuelwafa, A. El-Denglawey, M. Dongol, M.M. El-Nahass, T. Soga, Opt. Mater. 49, 271 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    M. Dongol, M.M. El-Nahass, A. El-Denglawey, A.A. Abuelwafa, T. Soga, Chin. Phys. B. 25, 067201 (2016)CrossRefGoogle Scholar
  15. 15.
    A.A. Abuelwafa, A. El-Denglawey, M. Dongol, M.M. El-Nahass, M.S. Ebied, T. Soga, Appl. Phys. A. 124, 33 (2018)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Shao, Y.Yang, Mater. 17, 2841 (2005)Google Scholar
  17. 17.
    L.F.Q.P. Marchesi, F.R. Simöoes, L.A. Pocrifka, E.C. Pereira, Phys. Chem. B. 115, 9570 (2011)CrossRefGoogle Scholar
  18. 18.
    B. Arredondo, M.B.M. -López, B. Romero, R. Vergaz, P.R. -Gomez, J. Martorell, Sol. Energy Mater. Sol. Cells. 44, 422 (2016)CrossRefGoogle Scholar
  19. 19.
    W. Aloui, T. Adhikari, J.-M. Nunzi, A. Bouazizi, Mater. Res. Bull. 78, 141 (2016)CrossRefGoogle Scholar
  20. 20.
    G. Garcia-Belmonte, A. Munar, E.M. Barea, J. Bisquert, I. Ugarte, R. Pacios, Org. Electron. 9, 847 (2008)CrossRefGoogle Scholar
  21. 21.
    M.T. Rispens, A. Meetsma, R. Rittberger, C.J. Brabec, N.S. .Sariciftci, J.C. Hummelen, Chem. Commun. 0, 2116 (2003)CrossRefGoogle Scholar
  22. 22.
    G. Paterno, A.J. Warren, J. Spencer, G. Evans, V.G. Sakai, J. Blumbergera, F. Cacialli, J. Mater. Chem. C. 1, 5619 (2013)CrossRefGoogle Scholar
  23. 23.
    A. Lefrançois, B. Luszczynska, B.P. -Donat, C. Lombard, B. Bouthinon, J.-M. Verilhac, M. Gromova, J.F. Vincent, S. Pouget, F. Chandezon, S. Sadki, P. Reiss, Sci. Rep. 5(1), 7768 (2015)CrossRefGoogle Scholar
  24. 24.
    Y.A.M. Ismail, N. Kishi, T. Soga, Thin Solid Films. 616, 73 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    Y.A.M. Ismail, T. Soga, T. Jimbo, Sol. Energy Mater. Sol. Cells. 94, 1406 (2010)CrossRefGoogle Scholar
  26. 26.
    B.P. Rand, C. Girotto, A. Mityashin, A. Hadipour, J. Genoe, P. Heremans, Appl. Phys. Lett. 95, 173304 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    B.P. Rand, S. Schols, D. Cheyns, H. Gommans, C. Girotto, J. Genoe, P. Heremans, J. Poortmans, Org. Electron. 10, 1015 (2009)CrossRefGoogle Scholar
  28. 28.
    R.R. Zope, M. Olguin, T. Baruah, J. Chem. Phys. 137, 084317 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    P.D.W. Boyd, C.A. Reed, Acc. Chem. Res. 38, 235 (2005)CrossRefGoogle Scholar
  30. 30.
    S.M. Khan, M. Kaur, J.R. Heflin, M.H. Sayyad, J. Phys. Chem. Solids. 72, 1430 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    J. Bartelt, Z. Beiley, E. Hoke, W. Mateker, J. Douglas, B. Collins, J. Tumbleston, K. Graham, A. Amassian, H. Ade, J. Fréchet, M. Toney, M. McGehee, Adv. Energy Mater. .3, 364 (2013)CrossRefGoogle Scholar
  32. 32.
    S. Lan, H. Yang, G. Zhang, X. Wu, W. Ning, S. Wang, H. Chen, T. Guo, J. Phys. Chem. C. 120, 21317 (2016)CrossRefGoogle Scholar
  33. 33.
    K.A. Mazzio, C.K. Luscombe, Chem. Soc. Rev. 44, 78 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Abate, J.-P. Correa-Baena, M. Saliba, M.S. Su’ait, F. Bella, Chem. Eur. J. .23, 1 (2017)CrossRefGoogle Scholar
  35. 35.
    S.B. Darling, F. You, RSC Adv. 3, 17633 (2013)CrossRefGoogle Scholar
  36. 36.
    K. Xiong, L. Hou, P. Wang, Y. Xia, D. Chen, B. Xiao, J. Lumine. 151, 193–196 (2014)CrossRefGoogle Scholar
  37. 37.
    G.D. Sharma, G.E. Zervaki, P.A. Angaridis, T.N. Kitsopoulos, A.G. Coutsolelos, J. Phys. Chem. C. 118, 5968 (2014)CrossRefGoogle Scholar
  38. 38.
    I. Lim, H. T.Bui, N.K. Shrestha, J.K. Lee, S.-H. Han, ACS Appl. Mater. Interfaces. 8, 8637 (2016)CrossRefGoogle Scholar
  39. 39.
    F.F. Muhammad, J Mater Sci. Mater Electron. 27, 637 (2016)CrossRefGoogle Scholar
  40. 40.
    H. Lua, X. Zhang, H. Zhang, J. Appl. Phys. 100, 054104 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    O. Dhibi, A. Ltaief, S. Zghal, A. Bouazizi, Vacuum. 99,80 (2014)Google Scholar
  42. 42.
    A. Kyritsis, P. Pissis, J. Polym. Sci. Polym. Phys. 35, 1545 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    A. Kyritsis, P. Pissis, J. Grammatikakis, J. Polym. Sci. Polym. Phys. 33, 1737 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    S.B. Aziz, Bull. Mater.Sci. 38, 1597 (2015)CrossRefGoogle Scholar
  45. 45.
    S.B. Aziz, Z.H.Z. Abidin, J. Appl. Poly. Sci. 132, 41774 (2015)CrossRefGoogle Scholar
  46. 46.
    A. Tabib, N. Sdiri, H. Elhouichet, M. Férid, Alloy. Compd. 622, 687 (2015)CrossRefGoogle Scholar
  47. 47.
    F.S. Howell, R.A. Bose, P.B. Macedo, C.T. Moynihan, Phys. Chem. 78, 639 (1974)CrossRefGoogle Scholar
  48. 48.
    S. Hajlaoui, I. Chaabane, A. Oueslati, K. Guidara, Phys. B. 474, 90 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • A. A. Abuelwafa
    • 1
    • 3
  • M. Dongol
    • 1
  • M. M. El-Nahass
    • 2
  • T. Soga
    • 3
  1. 1.Nano and Thin film Laboratory, Physics Department, Faculty of ScienceSouth Valley UniversityQenaEgypt
  2. 2.Physics Department, Faculty of EducationAin Shams UniversityCairoEgypt
  3. 3.Department of Electrical and Mechanical EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations