Applied Physics A

, 124:248 | Cite as

Hydrothermal synthesis of nanostructured β-LaS2 thin films

  • Trupti T. Ghogare
  • Rahul B. Pujari
  • Abhishek C. Lokhande
  • Chandrakant D. Lokhande
Rapid communication


Nanostructured lanthanum sulfide (β-LaS2) thin films are prepared by hydrothermal method. The X-ray diffraction analysis shows formation of orthorhombic crystal structure. The films have a direct band gap of 3.72 eV, useful for opto-electronic devices. Field emission scanning electron microscopy (FE-SEM) images of β-LaS2 films reveal 3D growth of nano-petals-like porous surface morphology. The synthesized films show hydrophilic nature with a contact angle of 46.9°. The β-LaS2 films exhibit supercapacitive electrochemical properties in 1 M of Na2SO4 electrolyte with a capacitance value of 121.42 Fg−1 at 5 mVs−1 scan rate. The cyclic voltammetry and galvanostatic charge–discharge analyses show that β-LaS2 is a potential candidate for anode material with a potential window of − 1.15 to 0 V in supercapacitor application.



Authors are thankful to Department of Science and Technology-Science and Engineering Research Board (DST-SERB), New Delhi India for their financial support through research Project No. SERB/F/7448/2016-17 dated 13 January, 2017.


  1. 1.
    J.H. Shim, K. Kim, B.I. Min, J.S. Kang, Electronic structures of La3S4 and Ce3S4. Physica B 328, 148–150 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    V.V. Sokolov, A.A. Kamarzin, L.N. Trushnikova, M.V. Savelyeva, Optical materials containing rare earth La2S3 sulfides. J. Alloys Compd. 225, 567–570 (1995)CrossRefGoogle Scholar
  3. 3.
    S.J. Patil, A.C. Lokhande, C.D. Lokhande, Effect of aqueous electrolyte on pseudocapacitive behavior of chemically synthesized La2S3 electrode. Mater. Sci. Semicond. Process. 41, 132–136 (2016)CrossRefGoogle Scholar
  4. 4.
    S.J. Patil, B.H. Patil, R.N. Bulakhe, C.D. Lokhande, Electrochemical performance of a portable asymmetric supercapacitor device based on cinnamon-like La2Te3 prepared by a chemical synthesis route. RSC Adv. 4, 56332–56341 (2014)CrossRefGoogle Scholar
  5. 5.
    S.J. Patil, V.C. Lokhande, N.R. Chodankar, C.D. Lokhande, Chemically prepared La2Se3 nanocubes thin film for supercapacitor application. J. Colloid Interface Sci. 469, 318–324 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    S.J. Patil, C.D. Lokhande, Fabrication and performance evaluation of rare earth lanthanum sulfide film for supercapacitor application: effect of air annealing. Mater. Des. 87, 939–948 (2015)CrossRefGoogle Scholar
  7. 7.
    S.J. Patil, V.S. Kumbhar, B.H. Patil, R.N. Bulakhe, C.D. Lokhande, Chemical synthesis of α-La2S3 thin film as an advanced electrode material for supercapacitor application. J. Alloys Compd. 611, 191–196 (2014)CrossRefGoogle Scholar
  8. 8.
    P.N. Kumata, S.H. Risbud, Non-aqueous chemical synthesis of tetragonal (β-La2S3) lanthanum sulphide powder. Mater. Sci. Eng. B. 18, 260–268 (1993)CrossRefGoogle Scholar
  9. 9.
    S. Zhou, L. Liu, S. Lou, Y. Wang, X. Chen, H. Yuan, Y. Hao, R. Yuan, N. Li, Room-temperature ferromagnetism of diamagnetically-doped ZnO aligned nanorods fabricated by vapor reaction. Appl. Phys. A. 102, 367–371 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    J. Yun, T.S. Bae, J.D. Kwon, S. Lee, G.H. Lee, Antireflective silica nanoparticle array directly deposited on flexible polymer substrates by chemical vapor deposition. Nanoscale 4, 7221–7230 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    W. Shi, S. Song, H. Zhang, Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 42, 5714–5743 (2013)Google Scholar
  12. 12.
    A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, C.D. Lokhande, Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes. Energy. 64, 234–241 (2014)CrossRefGoogle Scholar
  13. 13.
    Y. Zhou, H. Li, Sol-gel template synthesis and structural properties of a highly ordered LiNi0.5Mn0.5O2 nanowire array. J. Mater. Chem. 12, 681–686 (2002)CrossRefGoogle Scholar
  14. 14.
    K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, S.J. Kim, One pot hydrothermal growth of hierarchical nanostructured Ni3S2 on Ni foam for supercapacitor application. Chem. Eng. 251, 116–122 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Li, L. Cao, L. Qiao, M. Zhou, Y. Yang, P. Xiao, Y. Zhang, Ni-Co sulfide nanowires on nickel foam with ultrahigh capacitance for asymmetric supercapacitors. J. Mater. Chem. A. 2, 6540–6548 (2014)CrossRefGoogle Scholar
  16. 16.
    F.M. Michel, M.A. Schoonen, X.V. Zhang, S.T. Martin, J.B. Parise, Hydrothermal synthesis of pure α-phase manganese (II) sulfide without the use of organic reagents. Chem. Mater. 18, 1726–1736 (2006)CrossRefGoogle Scholar
  17. 17.
    M.S. Javed, J. Chen, L. Chen, Y. Xi, C. Zhang, B. Wan, C. Hu, Flexible full-solid state supercapacitors based on zinc sulphide spheres growing on carbon textile with superior charge storage. J. Mater. Chem. A. 4, 667–674 (2016)CrossRefGoogle Scholar
  18. 18.
    S.J. Bao, C.M. Li, C.X. Guo, Y. Qiao, Biomolecule-assisted synthesis of cobalt sulphide nanowires for application in supercapacitors. J. Power Sources 180, 676–681 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    H. Wan, X. Ji, J. Jiang, J. Yu, L. Miao, L. Zhang, S. Bie, H. Chen, Y. Ruan, Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J. Power Sources 243, 396–402 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    S.J. Patil, J.H. Kim, D.W. Lee, Graphene-nanosheet wrapped cobalt sulphide as a binder free hybrid electrode for asymmetric solid-state supercapacitor. J. Power Sources 342, 652–665 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Yadav, V.S. Kumbhar, S.J. Patil, N.R. Chodankar, C.D. Lokhande, Supercapacitive properties of chemically deposited La2O3 thin film. Ceram. Int. 42, 2079–2084 (2016)CrossRefGoogle Scholar
  22. 22.
    V.S. Kumbhar, A.D. Jagadale, C.D. Lokhande, Supercapacitive evaluation of soft chemically deposited α-Sm2S3 thin films. J. Power Sources 234, 107–110 (2013)CrossRefGoogle Scholar
  23. 23.
    S.J. Patil, R.N. Bulakhe, C.D. Lokhande, Nanoflake-modulated La2Se3 thin films prepared for an asymmetric supercapacitor device. Chem. Plus. Chem. 80, 1478–1487 (2015)Google Scholar
  24. 24.
    V.S. Kumbhar, A.C. Lokhande, N.S. Gaikwad, C.D. Lokhande, Porous network of samarium sulfide thin films for supercapacitive application. Mater. Sci. Semicond. Process. 33, 136–139 (2015)CrossRefGoogle Scholar
  25. 25.
    S.J. Patil, A.C. Lokhande, A.A. Yadav, C.D. Lokhande, Polyaniline/Cu2ZnSnS4 heterojunction based room temperature LPG sensor. J Mater Sci Mater Electron. 27, 7505–7508 (2016)CrossRefGoogle Scholar
  26. 26.
    V.S. Kumbhar, A.D. Jagadale, N.S. Gaikwad, C.D. Lokhande, Modified chemical synthesis of porous α-Sm2S3 thin films. Mater. Res. Bull. 56, 39–44 (2014)CrossRefGoogle Scholar
  27. 27.
    G.D. Bagade, V.S. Yemune, C.D. Lokhande, Preparation and characterization of lanthanum sulphide thin film deposited by spray pyrolysis techniques. Indian J. Eng. Mater. Sci. 9, 390–394 (2000)Google Scholar
  28. 28.
    Y. Gao, S. Cui, L. Mi, W. Wei, F. Yang, Z. Zheng, H. Hou, W. Chen, Double metal ions synergetic effect in hierarchical metal sulphide microflowers for enhanced supercapacitor performance. ACS Appl. Mater. Interfaces. 7, 4311–4319 (2015)CrossRefGoogle Scholar
  29. 29.
    H. Xia, M.O. Lai, L. Lu, Nanostructured manganese oxide thin films as electrode material for supercapacitors. JOM 63, 54–59 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Trupti T. Ghogare
    • 1
  • Rahul B. Pujari
    • 1
  • Abhishek C. Lokhande
    • 2
  • Chandrakant D. Lokhande
    • 1
  1. 1.Centre for Interdisciplinary ResearchD.Y. Patil UniversityKolhapurIndia
  2. 2.Department of Materials Science and EngineeringChonnam National UniversityGwangjuSouth Korea

Personalised recommendations