Applied Physics A

, 124:255 | Cite as

Magnetic, hyperthermic and structural properties of zn substituted CaFe2O4 powders

  • Abbas Kheradmand
  • Omid Vahidi
  • S. M. Masoudpanah


In the present study, we have synthesized single phase Ca1 − xZn x Fe2O4 powders by hydrothermal method. The cation distribution between the tetrahedral and octahedral sites in the spinel structure and the magnetic properties as a function of the zinc substitution have been investigated by X-ray diffraction (XRD), infrared spectroscopy and vibrating sample magnetometer methods. The obtained XRD pattern indicated that the synthesized particles had single phase cubic spinel structure with no impurity. The magnetic measurements showed that the saturation magnetization increased from 83 to 98 emu/g with the addition of zinc due to the decrease of inversity. The particle size observed by electron microscopy decreased from 1.38 to 0.97 µm with the increase of zinc addition. The Ca0.7Zn0.3Fe2O4 powders exhibited appropriate heating capability for hyperthermia applications with the maximum AC heating temperature of 20 °C and specific loss power of 9.29 W/g.


  1. 1.
    D. Rathore, R. Kurchania, R.K. Pandey, Gas sensing properties of size varying CoFe2O4 nanoparticles. IEEE Sens. J. 15, 4961–4966 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Saeedi, O. Vahidi, S. Bonakdar, Synthesis and characterization of glycyrrhizic acid coated iron oxide nanoparticles for hyperthermia applications. Mater Sci Eng C 77, 1060–1067 (2017)Google Scholar
  3. 3.
    S. Masoudpanah, M. Hasheminisari, A. Ghasemi, Magnetic properties and photocatalytic activity of ZnFe2–xLaxO4 nanoparticles synthesized by sol–gel autocombustion method. J. Sol-Gel. Sci. Technol. 80, 487–494 (2016)CrossRefGoogle Scholar
  4. 4.
    Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 36, R167 (2003)Google Scholar
  5. 5.
    K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82, 3279–3292 (1999)CrossRefGoogle Scholar
  6. 6.
    R. Valenzuela, Magnetic ceramics, vol. 4 (Cambridge University Press, Cambridge, 2005)Google Scholar
  7. 7.
    N. Ikenaga, Y. Ohgaito, T. Suzuki, H2S absorption behavior of calcium ferrite prepared in the presence of coal. Energy Fuels. 19, 170–179 (2005)CrossRefGoogle Scholar
  8. 8.
    L. Khanna, N.K. Verma, PEG/CaFe2O4 nanocomposite: Structural, morphological, magnetic and thermal analyses. Phys. B. 427, 68–75 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    L. Khanna, N. Verma, Synthesis, characterization and in vitro cytotoxicity study of calcium ferrite nanoparticles. Mater. Sci. Semicond. Process. 16, 1842–1848 (2013)CrossRefGoogle Scholar
  10. 10.
    I. Sharifi, H. Shokrollahi, S. Amiri, Ferrite-based magnetic nanofluids used in hyperthermia applications. J. Magn. Magn. Mater. 324, 903–915 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    R.A. Jasso-Terán, D.A. Cortés-Hernández, H.J. Sánchez-Fuentes, P.Y. Reyes-Rodríguez, L.E. de-León-Prado, J.C. Escobedo-Bocardo et al., Synthesis, characterization and hemolysis studies of Zn (1− x) CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications. J. Magn. Magn. Mater. 427, 241–244 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Xu, J. Sherwood, Y. Qin, R.A. Holler, Y. Bao, A general approach to the synthesis and detailed characterization of magnetic ferrite nanocubes. Nanoscale 7, 12641–12649 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    E.A. Perigo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola et al., Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2, 041302 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    S. Dutz, R. Hergt, Magnetic particle hyperthermia—a promising tumour therapy? Nanotechnology 25, 452001 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky et al., Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles. Nanoscale 8, 10124–10137 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    M. Jeun, S. Park, G.H. Jang, K.H. Lee, Tailoring MgxMn1–xFe2O4 superparamagnetic nanoferrites for magnetic fluid hyperthermia applications. ACS Appl. Mater. Interfaces 6, 16487–16492 (2014)CrossRefGoogle Scholar
  17. 17.
    D. Hirabayashi, Y. Sakai, T. Yoshikawa, K. Mochizuki, Y. Kojima, K. Suzuki et al., Mössbauer characterization of calcium-ferrite oxides prepared by calcining Fe2O3 and CaO, in ICAME 2005 (2007), pp. 809–813Google Scholar
  18. 18.
    R. Candeia, M. Bernardi, E. Longo, I. Santos, A. Souza, Synthesis and characterization of spinel pigment CaFe2O4 obtained by the polymeric precursor method. Mater. Lett. 58, 569–572 (2004)CrossRefGoogle Scholar
  19. 19.
    Z. Zhang, W. Wang, Solution combustion synthesis of CaFe2O4 nanocrystal as a magnetically separable photocatalyst. Mater. Lett. 133, 212–215 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Jalalian, S. Mirkazemi, S. Alamolhoda, The effect of poly vinyl alcohol (PVA) surfactant on phase formation and magnetic properties of hydrothermally synthesized CoFe2O4 nanoparticles. J. Magn. Magn. Mater. 419, 363–367 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Monodisperse magnetic single‐crystal ferrite microspheres. Angew. Chem. 117, 2842–2845 (2005)CrossRefGoogle Scholar
  22. 22.
    N. Sulaiman, M.J. Ghazali, B. Majlis, J. Yunas, M. Razali, Superparamagnetic calcium ferrite nanoparticles synthesized using a simple sol-gel method for targeted drug delivery. Bio Med. Mater. Eng. 26, S103–S110 (2015)Google Scholar
  23. 23.
    R. Jasso-Terán, D. Cortés-Hernández, E. Múzquiz-Ramos, H. Sánchez-Fuentes, Synthesis and characterization of zinc and calcium nanoferrites. J. Mater. Sci. Mater. Med. 25, 2221–2228 (2014)CrossRefGoogle Scholar
  24. 24.
    B. Xue, J. Luo, F. Zhang, Z. Fang, Biodiesel production from soybean and Jatropha oils by magnetic CaFe2O4–Ca2Fe2O5-based catalyst. Energy 68, 584–591 (2014)CrossRefGoogle Scholar
  25. 25.
    S. An, X. Liu, L. Yang, L. Zhang, Enhancement removal of crystal violet dye using magnetic calcium ferrite nanoparticle: Study in single-and binary-solute systems. Chem. Eng. Res. Des. 94, 726–735 (2015)CrossRefGoogle Scholar
  26. 26.
    J.L. Dormann, A. Tomas, M. Nogues, Cation Ordering in LiFe5O8 Studied by Mössbauer Spectroscopy and X-Ray Crystallography. Phys. Status Solidi, 77, 611–618 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    L. Wu, C.Y. Jimmy, L. Zhang, X. Wang, S. Li, Selective self-propagating combustion synthesis of hexagonal and orthorhombic nanocrystalline yttrium iron oxide. J. Solid State Chem. 177, 3666–3674 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    L. Skolnick, S. Kondo, L. Lavine, An improved x‐ray method for determining cation distribution in ferrites. J. Appl. Phys. 29, 198–203 (1958)ADSCrossRefGoogle Scholar
  29. 29.
    H. Zaki, S. Al-Heniti, N. Al Shehri, New scheme for cation distribution and electrical characterization of nanocrystalline aluminum doped magnesium ferrite MgAlxFe2–xO4. Phys. B. 436, 157–163 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    R. Dom, R. Subasri, K. Radha, P.H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun. 151, 470–473 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    P. Masina, T. Moyo, H.M. Abdallah, Synthesis, structural and magnetic properties of ZnxMg1−xFe2O4 nanoferrites. J. Magn. Magn. Mater. 381, 41–49 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    T. Kondo, A. Kurokawa, H. Takeuchi, T. Yanoh, S. Yano, K. Onuma et al., Magnetic properties of MgFe2O4 nanoparticles and Zn doping effect. Trans. Mater. Res. Soc. Jpn. 38, 513–516 (2013)CrossRefGoogle Scholar
  33. 33.
    F.S. Tehrani, V. Daadmehr, A. Rezakhani, R.H. Akbarnejad, S. Gholipour, Structural, magnetic, and optical properties of zinc-and copper-substituted nickel ferrite nanocrystals. J. Supercond. Novel Magn. 25, 2443–2455 (2012)CrossRefGoogle Scholar
  34. 34.
    J.T. Elizalde Galindo, A.H. Adair, C.E. Botez, V. Corral Flores, D. Bueno Baques, L. Fuentes Cobas et al., Zn-doping effect on the energy barrier to magnetization reversal in superparamagnetic nickel ferrite nanoparticles. Appl. Phys. A. 87, 743–747 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    B. Cullity, Elements of X-ray diffraction (Addison and Wesley Publishing Company Inc., Reading, 1978), pp. 32–106Google Scholar
  36. 36.
    D.S. Nikam, S.V. Jadhav, V.M. Khot, R. Bohara, C.K. Hong, S.S. Mali et al., Cation distribution, structural, morphological and magnetic properties of Co1−xZnxFe2O4 (x= 0–1) nanoparticles. RSC Adv. 5, 2338–2345 (2015)CrossRefGoogle Scholar
  37. 37.
    R. Grössinger, A critical examination of the law of approach to saturation. I. Fit procedure. Phys. Status Solidi, 66, 665–674 (1981)ADSCrossRefGoogle Scholar
  38. 38.
    S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161–2175 (2004)CrossRefGoogle Scholar
  39. 39.
    V. Khot, A. Salunkhe, N. Thorat, R. Ningthoujam, S. Pawar, Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia. Dalton Trans. 42, 1249–1258 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Noh, W. Na, J. Jang, J.-H. Lee, E.J. Lee, S.H. Moon et al., Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett. 12, 3716–3721 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Abbas Kheradmand
    • 1
  • Omid Vahidi
    • 1
  • S. M. Masoudpanah
    • 2
  1. 1.School of Chemical, Petroleum and Gas EngineeringIran University of Science and TechnologyTehranIran
  2. 2.School of Metallurgy and Materials EngineeringIran University of Science and Technology (IUST)TehranIran

Personalised recommendations