Applied Physics A

, 124:249 | Cite as

Synthesis and luminescent properties of CaCO3:Eu3+@SiO2 phosphors with core–shell structure

  • Min Liu
  • Ming Kang
  • Kexu Chen
  • Yongren Mou
  • Rong Sun


Integrating the processes of preparation of CaCO3:Eu3+ and its surface-coating, core–shell structured CaCO3:Eu3+@SiO2 phosphors with red emission were synthesized by the carbonation method and surface precipitation procedure using sodium silicate as silica source. The phase structure, thermal stability, morphology and luminescent property of the as-synthesized samples were characterized by X-ray diffraction, Fourier transform infrared spectrum, thermal analysis, field-emission scanning electron microscopy, transmission electron microscope and photoluminescence spectra. The experimental results show that Eu3+ ions as the luminescence center are divided into two types: one is at the surface of the CaCO3 and the other inhabits the site of Ca2+. For CaCO3:Eu3+@SiO2 phosphors, the SiO2 layers are continuously coated on the surface of CaCO3:Eu3+ and show a typical core–shell structure. After coated with SiO2 layer, the luminous intensity and the compatibility with the rubber matrix increase greatly. Additionally, the luminous intensity increases with the increasing of Eu3+ ions concentration in CaCO3 core and concentration quenching occurs when Eu3+ ions concentration exceeds 7.0 mol%, while it is 5.0 mol% for CaCO3:Eu3+ phosphors. Therefore, preparation of CaCO3:Eu3+@SiO2 phosphors can not only simplify the experimental process through integrating the preparation of CaCO3:Eu3+ and SiO2 layer, but also effectively increase the luminous intensities of CaCO3:Eu3+ phosphors. The as-obtained phosphors may have potential applications in the fields of optical materials and functional polymer composite materials, such as plastics and rubbers.



This work was supported by the Sichuan Science and Technology Support Project in China (2017GZ0126). This work was supported by the National 863 Project (2015AA034004).

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.


  1. 1.
    H. Li, K. Zheng, Y. Sheng, Y. Song, H. Zhang, J. Huang, Q. Huo, H. Zou, Opt. Laser Technol. 33–37, 49 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    S. Rodriguez-Liviano, N.O. Nuñez, S. Rivera-Fernández, J. M. de la Fuente, M. Ocaña, Langmuir, 29 3411–3418, (2013)Google Scholar
  3. 3.
    G. Wang, H. Zou, L. Gong, Z. Shi, X. Xu, Y. Sheng, Powder Technol. 174179, 258 (2014)Google Scholar
  4. 4.
    Y. Fan, S. Huang, J. Jiang, G. Li, P. Yang, H. Lian, Z. Cheng, J. Lin, J. Colloid Interface Sci. 280–285, 357 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    X. Yu, X. Xu, P. Yang, Q. Jiao, Z. Yang, Z. Song, J. Qiu, Opt. Mater. 931–934, 34 (2012)Google Scholar
  6. 6.
    J. Zheng, Q. Cheng, S. Wu, Z. Guo, Y. Zhuang, Y. Lu, J. Mater. Chem. C., 11219–11227, 3 (2015)CrossRefGoogle Scholar
  7. 7.
    Y. Lv, L. Wang, Y. Zhuang, T. Zhou, R. Xie, J. Mater. Chem. C., (2017)Google Scholar
  8. 8.
    JCG. Bünzli, Chem Rev. 2729, 110 (2010)CrossRefGoogle Scholar
  9. 9.
    S. Comby, E.M. Surender, O. Kotova, L.K. Truman, J.K. Molloy, T. Gunnlaugsson, Inorg Chem. 1867–1879, 53 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Vučak, M.N. Pons, J. Perić, H. Vivier, Powder Technol. 1–5, 97 (1998)Google Scholar
  11. 11.
    S. Zhang, X. Li, Powder Technol. 75–79, 141 (2004)CrossRefGoogle Scholar
  12. 12.
    Y. Pan, M. Wu, Q. Su, Mater. Res. Bull. 1537–1544, 38 (2003)Google Scholar
  13. 13.
    Q. Cheng, Y. Dong, M. Kang, P. Zhang, J. Lumin. 91–96, 156 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Long, D. Yi, Colloid. Polym. Sci. 1374–1380, 282 (2004)Google Scholar
  15. 15.
    F.A. Morsy, S.M. El-Sheikh, A. Barhoum, Arab. J. Chem. 6 (2014)Google Scholar
  16. 16.
    C. Cui, H. Ding, C. Li, D. Chen, Pol. J. Chem. Technol. 128–133, 17 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Pfeffer, R.N. Dave, D. Wei, M. Ramlakhan, Powder Technol. 40–67, 117 (2001)CrossRefGoogle Scholar
  18. 18.
    F.J. García-Rodríguez, J. González-Hernández, F. Pérez-Robles, J. Raman Spectrosc. 763771, 29 (2015)Google Scholar
  19. 19.
    M. Catauro, F. Bollino, F. Papale, M. Gallicchio, S. Pacifico, Mater Sci Eng C Mater Biol Appl. 548555, 48 (2015)CrossRefGoogle Scholar
  20. 20.
    S.C. Zhang, Y.X. Han, J.H. Jiang, H.K. Wang, J. Northeast. Univ.(Nat. Sci.). 169–172, 21 (2000)Google Scholar
  21. 21.
    S.U. Cheng-Yan, F.Q. Sun, Guangzhou Chem. Ind., 108–109, 41 (2013)Google Scholar
  22. 22.
    G.U. Li, R. Liu, Z. Guo, China Powder Sci. Technol. 20, 4 (2012)Google Scholar
  23. 23.
    Q. Cheng, M. Kang, J. Wang, P. Zhang, R. Sun, L.X. Song, Adv. Powder Technol. 848–852, 26 (2015)CrossRefGoogle Scholar
  24. 24.
    R. Shannon, Acta Crystallogr. A., 751–767, 32 (1976)ADSCrossRefGoogle Scholar
  25. 25.
    R. Campostrini, G. Carturan, M. Ferrari, M. Montagna, O. Pilla, J. Mater. Res. 745–753, 7 (1992)CrossRefGoogle Scholar
  26. 26.
    Y. Mou, M. Kang, M. Liu, F. Wang, K. Chen, R. Sun, Appl. Phys. A. 433, 123 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Mou, M. Kang, F. Wang, M. Liu, K. Chen, R. Sun, J. Sol-Gel Sci. Technol. 447–456, 83 (2017)Google Scholar
  28. 28.
    Y. Zheng, H. You, G. Jia, K. Liu, Y. Song, M. Yang, H. Zhang, Cryst. Growth Des. 5101–5107, 9 (2009)Google Scholar
  29. 29.
    Y. Gao, Y. Sun, H. Zou, Y. Sheng, X. Zhou, B. Zhang, Mater. Sci. Technol. B., 52–58, 203 (2016)Google Scholar
  30. 30.
    L. Gong, H. Zou, G. Wang, Y. Sun, Q. Huo, X. Xu, Opt. Mater. 583–588, 37 (2014)Google Scholar
  31. 31.
    S. Liu, R. Ma, Cryst. Growth. 190192, 169 (1996)Google Scholar
  32. 32.
    K. Lee, W.M. Sackett, Deep-Sea Res. Part 1, Oceanogr. Res. Pap. 1015–1028, 45 (1998)Google Scholar
  33. 33.
    L. Li, S. Zhang, J. Phys. Chem. B. 21438–21443, 110 (2006)Google Scholar
  34. 34.
    X. Yu, X. Xu, T. Jiang, H.L. Yu, P. Yang, Q. Jiao, Mater. Chem. Phys. 314318, 139 (2013)Google Scholar
  35. 35.
    W. Qin, D. Zhao, J. Zhang, J Nanosci Nanotechno. 1464–1467, 8 (2008)CrossRefGoogle Scholar
  36. 36.
    V. Naresh, S. J. Lumin. 15–21, 137 (2013)CrossRefGoogle Scholar
  37. 37.
    G. Bertrand-Chadeyron, M. El-Ghozzi, D. Boyer, R. Mahiou, J.C. Cousseins, J. Alloys Compd. 183–185, 317 (2001)Google Scholar
  38. 38.
    M. Zhang, E. Ciocan, Y. Bando, K. Wada, Appl. Phys. Lett. 491–493, 80 (2002)Google Scholar
  39. 39.
    J.I. Nara, S. Adachi, ECS J. Solid State Sci. Technol. R135–R141, 2 (2013)CrossRefGoogle Scholar
  40. 40.
    F. He, P. Yang, D. Wang, C. Li, N. Niu, S. Gai, M. Zhang, Langmuir: ACS J. Surf. Colloids., 5616–5623, 27 (2011)CrossRefGoogle Scholar
  41. 41.
    K. Sheng, B. Yan, X.F. Qiao, L. Guo, J. Photochem. Photobiol., A. 36–43, 210 (2010)CrossRefGoogle Scholar
  42. 42.
    L.D. Carlos, Y. Messaddeq, H.F. Brito, R.A. Sá, V. Ferreira, S.J.L. de Zea Bermudez, Ribeiro, Adv. Mater. 594–598, 12 (2010)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Environmental Friendly Energy MaterialsSouthwest University of Science and TechnologyMianyangChina

Personalised recommendations