Applied Physics A

, 124:252 | Cite as

On the use of photothermal techniques for the characterization of solar-selective coatings

  • J. A. Ramírez-Rincón
  • O. Ares-Muzio
  • J. D. Macias
  • M. A. Estrella-Gutiérrez
  • F. I. Lizama-Tzec
  • G. Oskam
  • J. J. Alvarado-Gil
Article
  • 89 Downloads

Abstract

The efficiency of the conversion of solar energy into thermal energy is determined by the optical and thermal properties of the selective coating, in particular, the solar absorptance and thermal emittance at the desired temperature of the specific application. Photothermal techniques are the most appropriate methods to explore these properties, however, a quantitative determination using photothermal radiometry, which is based on the measurement of emitted radiation caused by the heating generated by a modulated light source, has proven to be elusive. In this work, we present experimental results for selective coatings based on electrodeposited black nickel–nickel on both stainless steel and copper substrates, as well as for commercial TiNOX coatings on aluminum, illustrating that the radiation emitted by the surface depends on the optical absorption, thermal emissivity and on the light-into-heat energy conversion efficiency (quantum efficiency). We show that a combination of photothermal radiometry and photoacoustic spectroscopy can successfully account for these parameters, and provide values for the emissivity in agreement with values obtained by Fourier-transform infrared spectroscopy.

Notes

Acknowledgements

This work was supported by the Conacyt-SENER Energy Sustainability Fund through the Mexican Center for Innovation in Solar Energy (Grant 207450), within Strategic Projects P-10 and P-18. Conacyt is also acknowledged for funding under the “Fronteras de la ciencia” program, Grant 192 and CB2015/251882.

References

  1. 1.
    S.A. Kalogirou, Prog. Energy Combust. Sci. 30, 231–295 (2004)CrossRefGoogle Scholar
  2. 2.
    E. Erben, S.A. Tlhanyl, Ind. Eng. Chem. Prod. Res. Dev. 23, 659–661 (1984)CrossRefGoogle Scholar
  3. 3.
    K. Valleti, D. Murali- Krishna, S. Joshi, Sol. Energy Mater. Sol Cells. 121, 14–21 (2014)CrossRefGoogle Scholar
  4. 4.
    D.A. Jaworske, D.A. Shumway, (2003) Solar selective coatings for high temperature applications. (International forum-STAIF 2003), https://ntrs.nasa.gov/search.jsp?R=200300147402017-10-19T08:21:23+00:00Z. Accesed 10 Dec 2016
  5. 5.
    G.A. Niklasson, C.G. Granqvist, J. Appl. Phys. 55, 3382–3410 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    A. Ienei, C.M. Andreea, D. Anca, Energy Procedia. 48, 97–104 (2014)CrossRefGoogle Scholar
  7. 7.
    M.A. Zambrano-Arjona, R. Medina-Esquivel, J.J. Alvarado-Gil, J. Phys. D: Appl. Phys. 40, 6098–6104 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    H.G. Walther, Appl. Surf. Sci. 193, 156–166 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    A. Othonos, M. Nestoros, D. Palmeiro, C. Christofides, R.S. Bes, J.P. Traverse, Sol. Energy Mater. Sol Cells. 51, 171–179 (1998)CrossRefGoogle Scholar
  10. 10.
    A. Rosencwaig, E.A. Hildum, Phys. Rev. B. 22, 3301–3307 (1980) (1980)Google Scholar
  11. 11.
  12. 12.
    F.I. Lizama-Tzec, J.D. Macías, M.A. Estrella-Gutiérrez, A.C. Cahue-López, O. Arés, R. De Coss, J.J. Alvarado-Gil, G. Oskam, J. Mater. Sci.- Mater. Electron. 26, 5553–5561 (2015)CrossRefGoogle Scholar
  13. 13.
    D. Almomd, P. Patel, Photothermal Science and Techniques, 1st edn. Chapman & Hall, Londres, 1996, pp. 7–28Google Scholar
  14. 14.
    A. Yanguas-Gil, H. Wormeester, Relationship Between Morphology and Effective Medium Roughness, in Ellipsometry at the Nanoscale, ed. by M. Losurdo, K. Hingerl (Springer, Berlin-Heidelberg, 2013), pp. 179–202CrossRefGoogle Scholar
  15. 15.
    A. Mandelis, Thermal-wave fields in one dimension, in Diffusion-wave fields. Mathematical methods and green functions, 1st edn. (Springer, Toronto, 2001), pp. 85–164CrossRefGoogle Scholar
  16. 16.
    C. Valdes-Pinzon, J. Ordonez-Miranda, J.J. Alvarado-Gil, J. Appl. Phys. 112, 064909 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Almeco Group, Product specifications TiNOX energy. http://www.almecogroup.com/uploads/1117-Specification_TiNOX_energy_EN_RD_V020614_rev1.pdf. Accessed 12 Oct 2015
  18. 18.
    A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64–69 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    P. Martínez-Torres, J. Alvarado-Gil, Appl. Phys. A. 115, 975–986 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    J.A. Garcia, A. Mandellis, B. Farahbakhsh, C. Lebowitz, I. Harris, Int. J. Thermophys. 20, 1587–1602 (1999)CrossRefGoogle Scholar
  21. 21.
    S. Paoloni, H.G. Walther, J. Appl. Phys. 82, 101–106 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    A. Mandelis, J. Vanniasinkam, S. Budhudu, A. Othonos, A. Kokta, Phys. Rev. B. 48, 6808–6821 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    H. Richardson, M. Carlson, P. Tandler, P. Hernandez Nano Lett., 9, 1139–1146 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • J. A. Ramírez-Rincón
    • 1
  • O. Ares-Muzio
    • 1
  • J. D. Macias
    • 1
  • M. A. Estrella-Gutiérrez
    • 1
  • F. I. Lizama-Tzec
    • 1
  • G. Oskam
    • 1
  • J. J. Alvarado-Gil
    • 1
  1. 1.Departamento de Física AplicadaCentro de Investigación y de Estudios Avanzados del IPNMéridaMexico

Personalised recommendations