Applied Physics A

, 124:279 | Cite as

Thermal conversion of Cu4O3 into CuO and Cu2O and the electrical properties of magnetron sputtered Cu4O3 thin films

  • Dhanya S. Murali
  • Subrahmanyam Aryasomayajula


Among the three oxides of copper (CuO, Cu2O, and Cu4O3), Cu4O3 phase (paramelaconite is a natural, and very scarce mineral) is very difficult to synthesize. It contains copper in both + 1 and + 2 valence states, with an average composition Cu21+Cu22+O3. We have successfully synthesized Cu4O3 phase at room temperature (300 K) by reactive DC magnetron sputtering by controlling the oxygen flow rate (Murali and Subrahmanyam in J Phys D Appl Phys 49:375102, 2016). In the present communication, Cu4O3 thin films are converted to CuO phases by annealing in the air at 680 K and to Cu2O phase when annealed in argon at 720 K; these phase changes are confirmed by temperature-dependent Raman spectroscopy studies. Probably, this is the first report of the conversion of Cu4O3–CuO and Cu2O by thermal annealing. The temperature-dependent (300–200 K) electrical transport properties of Cu4O3 thin films show that the charge transport above 190 K follows Arrhenius-type behavior with activation energy of 0.14 eV. From photo-electron spectroscopy and electrical transport measurements of Cu4O3 thin films, a downward band bending is observed at the surface of the thin film, which shows its p-type semiconducting nature. The successful preparation of phase pure p-type semiconducting Cu4O3 could provide opportunities to further explore its potential applications.


  1. 1.
    D. Arana-Chavez, E. Toumayan, F. Lora, C. McCaslin, R.A. Adomaitis, Modeling the transport and reaction mechanisms of copper oxide CVD. Chem. Vap. Depos. 16, 336–345 (2010)CrossRefGoogle Scholar
  2. 2.
    D.S. Murali, S. Kumar, R. Choudhary, A.D. Wadikar, M.K. Jain, A. Subrahmanyam, Synthesis of Cu2O from CuO thin films: optical and electrical properties. AIP Adv. 5, 047143 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    A. Subramaniyan, J.D. Perkins, R.P. O’Hayre, S. Lany, V. Stevanovic, D.S. Ginley, A. Zakutayev, Non-equilibrium deposition of phase pure Cu2O thin films at reduced growth temperature. APL Mater. 2, 022105 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. Klar, T. Sander, C. Reindl, J. Benz, M. Eickhoff, Binary copper oxide semiconductors: from materials towards devices. Phys. Status Solidi 249, 1487–1509 (2012)CrossRefGoogle Scholar
  5. 5.
    A.S. Zoolfakar, R.A. Rani, A.J. Morfa, A.P. O’Mullane, K. Kalantar-Zadeh, Nanostructured copper oxide semiconductors: a perspective on materials, synthesis methods and applications. J. Mater. Chem. 2, 5247–5270 (2014)Google Scholar
  6. 6.
    Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, S. Yang, CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 60, 208–337 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Nandy, A. Banerjee, E. Fortunato, R. Martins, A review on Cu2O and CuI-based p-type semiconducting transparent oxide materials: promising candidates for new generation oxide based electronics. Rev. Adv. Sci. Eng. 2, 273–304 (2013)CrossRefGoogle Scholar
  8. 8.
    P. Morgan, D. Partin, B. Chamberland, M. O’Keeffe, Synthesis of paramelaconite: Cu4O3. J. Solid State Chem. 121, 33–37 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    L. Debbichi, M. Marco de Lucas,, J. Pierson, P. Kruger, Vibrational properties of CuO and Cu4O3 from first-principles calculations, and Raman and infrared spectroscopy. J. Phys. Chem. C. 116, 10232–10237 (2012)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, J. Ghanbaja, F. Soldera, S. Migot, P. Boulet, D. Horwat, F. Mücklich, J. Pierson, Tuning the structure and preferred orientation in reactively sputtered copper oxide thin films. Appl. Surf. Sci. 335, 85–91 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    J. Medina-Valtierra, C. Frausto-Reyes, G. Camarillo-Martínez, J.A. Ramírez-Ortiz, Complete oxidation of isopropanol over Cu4O3 (paramelaconite) coating deposited on fiberglass by CVD. Appl. Catal. A 356, 36–42 (2009)CrossRefGoogle Scholar
  12. 12.
    L. Zhao, H. Chen, Y. Wang, H. Che, P. Gunawan, Z. Zhong, H. Li, F. Su, Facile solvothermal synthesis of phase-pure Cu4O3 microspheres and their lithium storage properties. Chem. Mater. 24, 1136–1142 (2012)CrossRefGoogle Scholar
  13. 13.
    A.Y. Anderson, Y. Bouhadana, H.-N. Barad, B. Kupfer, E. Rosh-Hodesh, H. Aviv, Y.R. Tischler, S. Rühle, A. Zaban, Quantum efficiency and bandgap analysis for combinatorial photovoltaics: sorting activity of Cu–O compounds in all-oxide device libraries. ACS Comb. Sci. 16, 53–65 (2014)CrossRefGoogle Scholar
  14. 14.
    D.S. Murali, A. Subrahmanyam, J. Phys. D Appl. Phys. 49, 375102–375109 (2016)CrossRefGoogle Scholar
  15. 15.
    J.I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971)Google Scholar
  16. 16.
    A. Yildiz, N. Serin, T. Serin, M. Kasap, Crossover from nearest-neighbor hopping conduction to Efros–Shklovskii variable-range hopping conduction in hydrogenated amorphous silicon films. Jpn. J. Appl. Phys. 48, 111203 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    A. Bose, S. Basu, S. Banerjee, D. Chakravorty, Electrical properties of compacted assembly of copper oxide nanoparticles. J. Appl. Phys. 98, 074307_1–074307_5 (2005)CrossRefGoogle Scholar
  18. 18.
    A. Samokhvalov, N. Viglin, B. Gizhevskij, N. Loshkareva, V. Osipov, N. Solin, Y.P. Sukhorukov, Low-mobility charge carriers in CuO. Zh. Eksp. Teor. Fiz. 103, 951–961 (1993)ADSGoogle Scholar
  19. 19.
    T. Serin, A. Yildiz, Ş Şahin, N. Serin, Multiphonon hopping of carriers in CuO thin films. Phys B Condens Matter 406, 3551–3555 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    A. Thobor, J.F. Pierson, Properties and air annealing of paramelaconite thin films. Mater. Lett. 57, 3676–3680 (2003)CrossRefGoogle Scholar
  21. 21.
    J. Chrzanowski, J. Irwin, Raman scattering from cupric oxide. Solid State Commun. 70, 11–14 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    M. Ivanda, D. Waasmaier, A. Endriss, J. Ihringer, A. Kirfel, W. Kiefer, Low-temperature anomalies of cuprite observed by spectroscopy and X-ray powder raman diffraction. J. Raman Spectrosc. 28, 487È493 (1997)CrossRefGoogle Scholar
  23. 23.
    K. Reimann, K. Syassen, Raman scattering and photoluminescence in Cu2O under hydrostatic pressure. Phys. Rev. B 39, 11113 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    J. Li, G. Vizkelethy, P. Revesz, J. Mayer, K. Tu, Oxidation and reduction of copper oxide thin films. J. Appl. Phys. 69, 1020–1029 (1991)ADSCrossRefGoogle Scholar
  25. 25.
    C. Kaito, Y. Nakata, Y. Saito, T. Naiki, K. Fujita, Electron microscopic studies on structures and reduction process of copper oxide whiskers. J. Cryst. Growth 74, 469–479 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    T.K.S. Wong, S. Zhuk, S. Masudy-Panah, G.K. Dalapati, Current status and future prospects of copper oxide heterojunction solar cells. Materials. 9, 271–292 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    H. Wu, S.R. Desai, L. Wang, Chemical bonding between Cu and oxygen—copper oxides versus O2 complexes: a study of CuOx(x = 0–6) species by Anion Photoelectron Spectroscopy. J. Phys. Chem. A. 101, 2103–2111 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dhanya S. Murali
    • 1
  • Subrahmanyam Aryasomayajula
    • 1
  1. 1.Semiconductor Laboratory, Department of PhysicsIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations