Advertisement

Applied Physics A

, 124:261 | Cite as

Enhanced photoluminescence and thermal stability of divalent ions (Zn2+, Mg2+) assisted CaTiO3:Eu3+ perovskite phosphors for lighting applications

  • Dhananjay Kumar Singh
  • J. Manam
Article

Abstract

Current study proposes the improved red emission of Zn2+ and Mg2+ ions incorporated CaTiO3:Eu3+ phosphors synthesized via the well-known solid-state reaction method. Under the 397 nm UV excitation, the Zn2+- and Mg2+-incorporated CaTiO3:0.15Eu3+ phosphor having orthorhombic structure with space group Pbnm exhibited an intense red emission at 619 nm. This can be credited to the hypersensitive 5D0 → 7F2 transition of Eu3+ ions, which is also indicative of the fact that the Eu3+ ions populated the non-inversion symmetry sites in the CaTiO3 lattices. The optimized composition CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, pronounces in a magnificent enhancement of PL intensity by 5.5 and 2.5 times, respectively, as compared to CaTiO3:0.15 Eu3+ phosphor. From the temperature-dependent emission spectra, ∆Ea were enunciated to be 0.101 and 0.086 eV for CaTiO3:0.15Eu3+, 0.20Zn2+ and CaTiO3:0.15Eu3+, 0.10Mg2+ phosphors, respectively, for thermal quenching. In addition, it can be better understood as related to the adequate thermal stability of 60% even at 450 and 420 K, respectively. Furthermore, the Judd–Ofelt theory was used to study the radiative intensity parameters of Eu3+ ions in the CaTiO3 lattices. The experimental results incited the bright prospects of synthesized ceramics as a promising candidate for lighting applications.

Notes

Acknowledgements

The authors are gratefully acknowledge the MHRD, government of India for financial support and CRF Indian Institute of Technology (ISM), Dhanbad for all the characterization facility.

References

  1. 1.
    Y. Zhang, Z. Xia, W. Wu, J. Am. Ceram. Soc. 96, 1043 (2013)CrossRefGoogle Scholar
  2. 2.
    W. Liu, C. Huang, C. Yeh, Y. Chiu, Y. Yeh, R. Liu, RSC Adv. 3, 9023 (2013)CrossRefGoogle Scholar
  3. 3.
    N. Zhang, C. Guo, H. Jing, RSC Adv. 3, 7495 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Dutta, S. Som. S.K. Sharma, Dalton Trans. 42, 9654 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Shang, D. Geng, X. Kang, D. Yang, Y. Zhang, J. Lin, Inorg. Chem. 51, 11106 (2012)CrossRefGoogle Scholar
  6. 6.
    C.C. Lin, A. Meijerink, R.S. Liu., J. Phys. Chem. Lett. 7, 496 (2016)CrossRefGoogle Scholar
  7. 7.
    Y. Liu, G. Liu, J. Wang, X. Dong, W. Yu, Inorg. Chem. 21, 11457 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Neeraj, N. Kijima, A.K. Cheetham, Chem. Phys. Lett. 387, 2 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    Y.Q. Liu, S. Va, J.E.J. Van Steen, J.W.H. Van Krewal, G. Botty, A. Delsing, F. Disalvo, G. Dewith, H. Hintzen, J. Alloys Compd. 417, 273 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Long, J. Hou, G. Zhang, F. Huang, Y. Zeng, Ceram. Int. 39, 6013 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Zhang, B. Sun, Q. Liu, N. Ding, H. Yang, L. Wang, Q. Zhang, J. Alloys Compd. 657, 27 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Renping, T. Fu., H. Xu, W. Luo, D. Peng, Z. Chen, J. Fu, J. Alloys Compd. 674, 51 (2016)CrossRefGoogle Scholar
  13. 13.
    H. Zhan, X. Jiang, M. Zhu, X. Li, Z. Luo, K. Shu, J. Cryst. Growth. 433, 80 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    K. Choia, H. Kila, Y. Leea, D. Lima, S.C.B. Lee, J. Lumin. 131, 894 (2011)CrossRefGoogle Scholar
  15. 15.
    S. Liu, Z. Xiu, J. Liu, F. Xu, W. Yu, J. Pan, X. Cui, J. Yu, J. Alloys Compd. 441, L7 (2007)CrossRefGoogle Scholar
  16. 16.
    T. Orihashi, S. Adachi, J. Alloys Compd. 646, 1116 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Wu, Z. Sun, K. Ruan, Y. Xu, H. Zhang, J. Lumin. 155, 269 (2014)CrossRefGoogle Scholar
  18. 18.
    B. Marí, K.C. Singh, P. Cembrero-Coca, I. Singh, D. Singh, S. Chand, Display. 34, 346 (2013)CrossRefGoogle Scholar
  19. 19.
    P. Liu, J. Yin, X. Mi, L. Zhang, L. Bie, J. Rare Earths. 31, 555 (2013)CrossRefGoogle Scholar
  20. 20.
    Y. Wang, W. Zhang, P. Zhang, J. Li, J. Long, Luminescence,  https://doi.org/10.1002/bio.2772
  21. 21.
    L.H. Oliveira, J. Savioli, A.P. de Moura, I.C. Nogueira, M.S. Li, E. Longo, J.A. Varela, I.L.V. Rosa, J. Alloys Compd. 647, 265 (2015)CrossRefGoogle Scholar
  22. 22.
    R. Fujiwara, H. Sano, M. Shimizu, M. Kuwabara, J. Lumin. 129, 231 (2009)CrossRefGoogle Scholar
  23. 23.
    D.K. Singh, P.K. Baitha, J. Manam, J. Appl. Phys. A. 122, 668 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    P. Zeng, L. Yu, Z. Qiu, J. Zhang, C. Rong, C. Li, Z. Fu, S. Lian, J. Sol-Gel Sci. Technol. 64, 315 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Wu, F. Zhao, X. Piao, K. Ruan, Luminescence. 31, 152 (2016)CrossRefGoogle Scholar
  26. 26.
    P.K. Baitha, J. Manam, J. Rare Earths. 33, 805 (2015)CrossRefGoogle Scholar
  27. 27.
    P. Kumari, J. Manam, Spectrochim. Acta A. 152, 109 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    E. Oz, S. Demirel, S. Altin, J. Alloys Compd. 671, 24 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Wu, F. Zhao, K. Ruan, H. Zhang, X. Piao, Chem. Phys. Lett. 633, 234 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    D.K. Singh, J. Manam, J. Mater Sci: Mater Electron. 27, 10371 (2016)Google Scholar
  31. 31.
    D. Chen, Y. Wei Xu, Y. Zhou, Chen, J. Alloys Compd. 676, 215 (2016)CrossRefGoogle Scholar
  32. 32.
    L. Zhanga, B. Suna, Q. Ding, H. Yanga, L. Wangb, Q. Zhangb, J. Alloys Compd. 657, 27 (2016)CrossRefGoogle Scholar
  33. 33.
    K. Mondal, P. Kumari, J. Manam, Curr. Appl Phys. 16, 707 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    M. Chowdhury, S.K. Sharma, RSC Adv. 5, 51102 (2015)CrossRefGoogle Scholar
  35. 35.
    W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49, 4412 (1968)ADSCrossRefGoogle Scholar
  36. 36.
    S. Das, S. Som. C. Yang, S. Chavhan, C. Lu, Sci. Rep.,  https://doi.org/10.1038/srep25787
  37. 37.
    H. Zhu, M. Fang, Z. Huang, Y. Liu, K. Chen, X. Min, Y. Mao, M. Wang, J. Lumin. 172, 180 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Medica, Z. Antica, V. Dordevica, P. Ahrenkiel, M. Cincovica, M. Dramicanin, J. Lumin. 170, 679 (2016)CrossRefGoogle Scholar
  39. 39.
    J. Zhong, D. Chen, H. Xu, W. Zhao, J.Sun,Z. Ji, J Alloys. Compd,  https://doi.org/10.1016/j.jallcom.2016.10.211
  40. 40.
    T. Chien, J.-C. Yang, C. Hwang, M. Yoshimura, J. Alloys Compd. 676, 286 (2016)CrossRefGoogle Scholar
  41. 41.
    D. R.Cao, H. Peng, Z. Xu, H. Luo, S. Ao, Guo, J. Fu, Optik. 127, 7896 (2016)ADSCrossRefGoogle Scholar
  42. 42.
    X. Ding, G. Zhu, W. Geng, Q. Wang, Y. Wang, Inorg. Chem. 55, 154 (2016)CrossRefGoogle Scholar
  43. 43.
    D.K. Singh, K. Mondal, J. Manam, Ceram. Inter. 43, 13602 (2017)CrossRefGoogle Scholar
  44. 44.
    V. Dubey, R. Tiwari, R.K. Tamrakar, J. Kaur, S. Duttad, S. Das, H. Visser, S. Som, J. Lumin. 180, 169 (2016)CrossRefGoogle Scholar
  45. 45.
    M. Dalal, S. Chahar, J. Dalal, A. Khatkar, S.P. Khatkar, J. Alloys Compd. 686, 366 (2016)CrossRefGoogle Scholar
  46. 46.
    C. Shivakumara, R. Saraf, S. Behera, ,N. Dhananjaya, H. Nagabhushana, Spectrochim. Acta A. 151, 141 (2015)CrossRefGoogle Scholar
  47. 47.
    A.K. Parchur, A.I. Prasad, A.A. Ansari, S.B. Rai, R.S. Ningthoujam, Dalton Trans. 41, 11032 (2012)CrossRefGoogle Scholar
  48. 48.
    L. Wua, H. Zhanga, W. Zhenga, X. Zhanga, H. J. Seo, Mater. Res. Bull. 93, 245 (2017)CrossRefGoogle Scholar
  49. 49.
    P. Kumari, J. Manam, RSC Adv. 5, 107575 (2015)CrossRefGoogle Scholar
  50. 50.
    D.K. Singh, J. Manam, J. Electron. Mater. Lett. 13, 292 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied PhysicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations