Advertisement

Applied Physics A

, 124:239 | Cite as

Synergistic effect of graphene nanosheets and zinc oxide nanoparticles for effective adsorption of Ni (II) ions from aqueous solutions

  • Mahboubeh Hadadian
  • Elaheh K. Goharshadi
  • Mina Matin Fard
  • Hossein Ahmadzadeh
Article
  • 131 Downloads

Abstract

The threat of toxic substances such as heavy metals to public health and wildlife has led to an increasing public awareness. Different techniques for neutralizing the toxic effects of heavy metals in wastewater have been used. Here, we prepared a new and efficient type of adsorbent, zinc oxide–graphene nanocomposite (ZnO–Gr), via a green method to remove Ni (II) ions from aqueous solutions. A facile microwave-assisted hydrothermal technique in the presence of an ionic liquid, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide [C6mim] [NTf2], was used to prepare ZnO–Gr. The synergistic effect between graphene nanosheets and ZnO nanoparticles in this new adsorbent for Ni (II) ions caused a maximum adsorption capacity of 66.7 mg g−1 at room temperature which is much higher than that of graphene nanosheets (3.8 mg g−1) and other carbonaceous nanomaterials used as an adsorbent in the literature. The maximum desorption percentage (90.32%) was achieved at pH 3.6. By thermodynamic study, we found that the adsorption of this heavy metal ion on ZnO–Gr was spontaneous (ΔG° = −6.14 kJ mol−1) and endothermic (ΔH° = 53.31 kJ mol−1) with entropy change of ΔS° = 199.45 J K−1 mol− 1.

Notes

Acknowledgements

The authors acknowledge Ferdowsi University of Mashhad for supporting this project (3/26725).

Supplementary material

339_2018_1664_MOESM1_ESM.docx (45 kb)
Supplementary material 1 (DOCX 45 KB)

References

  1. 1.
    M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, J. Hazard. Mater. 211, 317–331 (2012)CrossRefGoogle Scholar
  2. 2.
    A. Singh, R.K. Sharma, M. Agrawal, F.M. Marshall, Food Chem. Toxicol. 48, 611–619 (2010)CrossRefGoogle Scholar
  3. 3.
    L. Patrick, Altern. Med. Rev. 11, 114 (2006)Google Scholar
  4. 4.
    S. Langård, Sci. Total Environ. 148, 303–309 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    H. Sakai, S. Matsuoka, A.A. Zinchenko, S. Murata, Colloids Surf. A 347, 210–214 (2009)CrossRefGoogle Scholar
  6. 6.
    L. Charerntanyarak, Water Sci. Technol. 39, 135–138 (1999)Google Scholar
  7. 7.
    T. Zewail, N. Yousef, Alex. Eng. J. 54, 83–90 (2015)CrossRefGoogle Scholar
  8. 8.
    A. Dabrowski, Z. Hubicki, P. Podkościelny, E. Robens, Chemosphere 56, 91–106 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    M. Barakat, E. Schmidt, Desalination 256, 90–93 (2010)CrossRefGoogle Scholar
  10. 10.
    L.K. Wang, Y.-T. Hung, N.K. Shammas, Physicochemical treatment processes. Springer, Berlin 2005CrossRefGoogle Scholar
  11. 11.
    L. Zhang, Y. Wu, X. Qu, Z. Li, J. Ni, J. Environ. Sci. 21, 764–769 (2009)CrossRefGoogle Scholar
  12. 12.
    M. Al-Shannag, Z. Al-Qodah, K. Bani-Melhem, M.R. Qtaishat, M. Alkasrawi, Chem. Eng. J. 260, 749–756 (2015)CrossRefGoogle Scholar
  13. 13.
    J.R. Parga, D.L. Cocke, J.L. Valenzuela, J.A. Gomes, M. Kesmez, G. Irwin, H. Moreno, M. Weir, J. Hazard. Mater. 124, 247–254 (2005)CrossRefGoogle Scholar
  14. 14.
    A. Konsowa, Desalination 254, 29–34 (2010)CrossRefGoogle Scholar
  15. 15.
    J.G. Dean, F.L. Bosqui, K.H. Lanouette, Environ. Sci. Technol. 6, 518–522 (1972)ADSCrossRefGoogle Scholar
  16. 16.
    H. Ozaki, K. Sharma, W. Saktaywin, Desalination 144, 287–294 (2002)CrossRefGoogle Scholar
  17. 17.
    I. Petrinic, J. Korenak, D. Povodnik, C. Hélix-Nielsen, J. Clean. Prod. 101, 292–300 (2015)CrossRefGoogle Scholar
  18. 18.
    G. Yifei, J. Environ. Anal. Toxicol. 2, 1000154 (2012)Google Scholar
  19. 19.
    K.C. Kemp, H. Seema, M. Saleh, N.H. Le, K. Mahesh, V. Chandra, K.S. Kim, Nanoscale 5, 3149–3171 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    K. Kadirvelu, K. Thamaraiselvi, C. Namasivayam, Bioresour. Technol. 76, 63–65 (2001)CrossRefGoogle Scholar
  21. 21.
    A.G. Sanchez, E.A. Ayuso, O. Blas, Clay Miner. 34, 469–469 (1999)CrossRefGoogle Scholar
  22. 22.
    J. Wang, C. Chen, Biotechnol. Adv. 27, 195–226 (2009)CrossRefGoogle Scholar
  23. 23.
    S.B. Khan, M.M. Rahman, H.M. Marwani, A.M. Asiri, K.A. Alamry, Nanoscale Res. Lett. 8, 1 (2013)CrossRefGoogle Scholar
  24. 24.
    E. Deliyanni, E. Peleka, K. Matis, J. Hazard. Mater. 172, 550–558 (2009)CrossRefGoogle Scholar
  25. 25.
    M.S. Mauter, M. Elimelech, Environ. Sci. Technol. 42, 5843–5859 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    F.Y. Jiang, C.M. Wang, Y. Fu, R.C. Liu, J. Alloys Compd. 503, L31-L33 (2010)CrossRefGoogle Scholar
  27. 27.
    M.B. Moghaddam, E.K. Goharshadi, M.H. Entezari, P. Nancarrow, Chem. Eng. J. 231, 365–372 (2013)CrossRefGoogle Scholar
  28. 28.
    E.K. Goharshadi, Y. Ding, P. Nancarrow, J. Phys. Chem. Solids. 69, 2057–2060 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    T. Lv, L. Pan, X. Liu, T. Lu, G. Zhu, Z. Sun, J. Alloys Compd. 509, 10086–10091 (2011)CrossRefGoogle Scholar
  30. 30.
    T.T. Tung, J.F. Feller, T. Kim, H. Kim, W.S. Yang, K.S. Suh, J. Polym. Sci. Part A: Polym. Chem. 50, 927–935 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    M.I. Kandah, J.L. Meunier, J. Hazard. Mater. 146, 283–288 (2007)CrossRefGoogle Scholar
  32. 32.
    E. Pulido Melián, O. González Díaz, J. Doña Rodríguez, G. Colón, J. Araña, J. Herrera, J. Melián, J.P. Navío, Peña, Appl. Catal. A Gen. 364, 174–181 (2009)CrossRefGoogle Scholar
  33. 33.
    S. Yang, J. Li, D. Shao, J. Hu, X. Wang, J. Hazard. Mater. 166, 109–116 (2009)CrossRefGoogle Scholar
  34. 34.
    S. Cavus, G. Gurdag, Ind. Eng. Chem. Res. 48, 2652–2658 (2009)CrossRefGoogle Scholar
  35. 35.
    H.-T. Fan, X. Fan, J. Li, M. Guo, D. Zhang, F. Yan, T. Sun, Ind. Eng. Chem. Res. 51, 5216–5223 (2012)CrossRefGoogle Scholar
  36. 36.
    C.O. Ijagbemi, M.-H. Baek, D.-S. Kim, J. Hazard. Mater. 166, 538–546 (2009)CrossRefGoogle Scholar
  37. 37.
    R.-S. Juang, M.-L. Chen, Ind. Eng. Chem. Res. 36, 813–820 (1997)CrossRefGoogle Scholar
  38. 38.
    Z. Aksu, Process Biochem. 38, 89–99 (2002)CrossRefGoogle Scholar
  39. 39.
    J.S. Wang, R.T. Peng, J.-H. Yang, Y.-C. Liu, X.-J. Hu. Carbohydr. Polym. 84, 1169–1175 (2011)CrossRefGoogle Scholar
  40. 40.
    S. Elovich, O. Larinov, Izv. Akad. Nauk. SSSR, Otd. Khim. Nauk. 2, 209–216 (1962)Google Scholar
  41. 41.
    M.I. Temkin, J. Phys. Chem. (USSR) 15, 296–332 (1941)Google Scholar
  42. 42.
    O. Hamdaoui, E. Naffrechoux, J. Hazard. Mater. 147, 381–394 (2007)CrossRefGoogle Scholar
  43. 43.
    A. Kiselev, Kolloid Zhur. 20, 338–348 (1958)Google Scholar
  44. 44.
    Y. Ren, N. Yan, Q. Wen, Z. Fan, T. Wei, M. Zhang, J. Ma, Chem. Eng. J. 175, 1–7 (2011)CrossRefGoogle Scholar
  45. 45.
    C. Chen, X. Wang, Ind. Eng. Chem. Res. 45, 9144–9149 (2006)CrossRefGoogle Scholar
  46. 46.
    J. Ruparelia, S. Duttagupta, A. Chatterjee, S. Mukherji, Desalination 232, 145–156 (2008)CrossRefGoogle Scholar
  47. 47.
    C. Lu, C. Liu, J. Chem. Technol. Biotechnol. 81, 1932–1940 (2006)CrossRefGoogle Scholar
  48. 48.
    S. Samiee, E.K. Goharshadi, J. Nanopart. Res. 16, 1–16 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mahboubeh Hadadian
    • 1
  • Elaheh K. Goharshadi
    • 1
    • 2
  • Mina Matin Fard
    • 1
  • Hossein Ahmadzadeh
    • 1
  1. 1.Department of ChemistryFerdowsi University of MashhadMashhadIran
  2. 2.Center of Nano ResearchFerdowsi University of MashhadMashhadIran

Personalised recommendations