Applied Physics A

, 124:237 | Cite as

Nanosecond laser ablation of target Al in a gaseous medium: explosive boiling

  • V. I. Mazhukin
  • A. V. Mazhukin
  • M. M. Demin
  • A. V. Shapranov
Article
  • 23 Downloads
Part of the following topical collections:
  1. COLA2017

Abstract

An approximate mathematical description of the processes of homogeneous nucleation and homogeneous evaporation (explosive boiling) of a metal target (Al) under the influence of ns laser radiation is proposed in the framework of the hydrodynamic model. Within the continuum approach, a multi-phase, multi-front hydrodynamic model and a computational algorithm are designed to simulate nanosecond laser ablation of the metal targets immersed in gaseous media. The proposed approach is intended for modeling and detailed analysis of the mechanisms of heterogeneous and homogeneous evaporation and their interaction with each other. It is shown that the proposed model and computational algorithm allow modeling of interrelated mechanisms of heterogeneous and homogeneous evaporation of metals, manifested in the form of pulsating explosive boiling. Modeling has shown that explosive evaporation in metals is due to the presence of a near-surface temperature maximum. It has been established that in nanosecond pulsed laser ablation, such exposure regimes can be implemented in which phase explosion is the main mechanism of material removal.

Notes

Acknowledgements

The research was funded by the Russian Foundation for Basic Research, Grant no. 16-07-00263.

References

  1. 1.
    J.C. Millerin (ed.), Laser Ablation: Principles and Applications (Springer, Berlin, 1994)Google Scholar
  2. 2.
    D. Bäuerle, Laser Processing and Chemistry (Springer, Singapore, 2000)CrossRefGoogle Scholar
  3. 3.
    C.R. Phipps (ed.) Laser Ablation and Its Applications (Springer, New York, 2007)Google Scholar
  4. 4.
    J. Cheng, C.-S. Liu, S. Shang, D. Li, W. Perrie, G. Dearden, K. Watkins, Opt. Laser Technol. 46, 88 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    R. Eason (ed.) Pulsed Laser Deposition of Thin Films (Wiley, Hoboken, 2007)Google Scholar
  6. 6.
    D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced Breakdown Spectroscopy (Wiley, New York, 2006)CrossRefGoogle Scholar
  7. 7.
    S. Barcikowski, A. Hahn, A.V. Kabashin, B.N. Chichkov, Appl. Phys. A. 87, 47 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    D. Zhang, B. Gookce, S. Barcikowski, Chem. Rev. 117, 3990 (2017)Google Scholar
  9. 9.
    V. Schmidt, M.R. Belegratis (eds.) Laser Technology in Biomimetics: Basics and Applications. Biological and Medical Physics (Springer, Berlin, 2013)Google Scholar
  10. 10.
    E. Fadeeva, S. Schlie-Wolter, B.N. Chichkov, G. Paasche, T. Lenarz, Laser Surface Modification of Biomaterials, Techniques and Applications, vol. 111 (Woodhead Publishing, Cambridge, 2016), p. 145Google Scholar
  11. 11.
    V.I. Mazhukin, A.V. Mazhukin, M.G. Lobok, Laser Phys. 19(5), 1169–1178 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    B. Verhoff, S.S. Harilal, J.R. Freeman, P.K. Diwakar, A. Hassanein, J. Appl. Phys. 112, 093303 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    A. Miotello, R. Kelly, Appl. Phys. Lett. 67, 3535 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    A. Mazzi, A. Miotello, J. Coll. Interface Sci. 489, 1 (2016)Google Scholar
  15. 15.
    C. Porneala, D.A. Willis, J. Phys. D Appl. Phys. 42, 155503 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    N. Bulgakova, A. Bulgakov, Appl. Phys. A 73, 199 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    V.I. Mazhukin, A.V. Shapranov, M.M. Demin, A.A. Samokhin, A.E. Zubko, Math. Montisnigri 37, 24 (2016)Google Scholar
  18. 18.
    V.I. Mazhukin, A.V. Shapranov, M.M. Demin, A.A. Samokhin, A.E. Zubko, Math. Montisnigri 38, 78 (2017)Google Scholar
  19. 19.
    A.H.A. Lutey, J. Manuf. Sci. Eng. 135, 061003 (2013)CrossRefGoogle Scholar
  20. 20.
    V.I. Mazhukin, V.V. Nossov, I. Smurov, Appl. Surf. Sci. 253, 7686 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    V.I. Mazhukin, V.V. Nossov, I. Smurov, J. Appl. Phys. 101, 024922 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    S.S. Harilal, G.V. Miloshevsky, D.P. Kiwakar, N.L. La Haye, A. Hassanein, Phys. Plasmas 19, 083504 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    X.W. Li, W.F. Wei, J. Wu, S.L. Jia, A.C. Qiu, J. Appl. Phys. 113, 243304 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    V.I. Mazhukin, A.A. Samokhin, A.V. Shapranov, M.M. Demin, Mater. Res. Express 2, 016402 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    V.I. Mazhukin, A.A. Samarskii, Surv. Math. Ind. 4, 85 (1994)Google Scholar
  26. 26.
    D. Autrique, G. Clair, D. L’Hermite, V. Alexiades, A. Bogaerts, B. Rethfeld, J. Appl. Phys. 114, 023301 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    G. Galasso, M. Kaltenbacher, A. Tomaselli, D. Scarpa, J. Appl. Phys. 117, 123101 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    H. Gleiter, Nanostructured materials: basic concepts and microstructure. Acta Metall. 48, 1 (2000)Google Scholar
  29. 29.
    M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater. Sci. 51, 427 (2006)CrossRefGoogle Scholar
  30. 30.
    L.V. Zhigilei, Z. Lin, D.S. Ivanov, J. Phys. Chem. C 113, 11892 (2009)CrossRefGoogle Scholar
  31. 31.
    C. Wu, L.V. Zhigilei, Appl. Phys. A 114, 11 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    A.K. Upadhyay, N.A. Inogamov, B. Rethfeld, H.M. Urbassek, Phys. Rev. B 78, 045437 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    V.I. Mazhukin, A.V. Shapranov, A.A. Samokhin, A.Yu. Ivochkin, Math. Montisnigri 27, 65 (2013)Google Scholar
  34. 34.
    N. Farid, S.S. Harilal, H. Ding, A. Hassanein, J. Appl. Phys. 115, 033107 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    M. Aghaei, S. Mehrabian, S.N. Tavassoli, J. Appl. Phys. 104(5), 053303 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    G. Clair, D. L’Hermite, J. Appl. Phys. 110(8), 083307 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    V.I. Mazhukin, A.V. Shapranov, M.M. Demin, N.A. Kozlovskaya, Bull. Lebedev Phys. Inst. 43, 283 (2016)ADSCrossRefGoogle Scholar
  38. 38.
    V.I. Mazhukin, A.V. Shapranov, A.V. Mazhukin, O.N. Koroleva, Math. Montisnigri 36, 58 (2016)MathSciNetGoogle Scholar
  39. 39.
    V.I. Mazhukin, A.V. .Shapranov, M.M. Demin, A.V. Mazhukin, Proc. SPIE 10453, 104530X (2017)Google Scholar
  40. 40.
    A.A. Samarskii, P.P. Matus, V.I. Mazhukin, I.E. Mozolevski, Comput. Math. Appl. 44, 501 (2002)MathSciNetCrossRefGoogle Scholar
  41. 41.
    V.I. Mazhukin, D.A. Malaphei, P.P. Matus, A.A. Samarskii, Comput. Math. Math. Phys. 41, 379 (2001)MathSciNetGoogle Scholar
  42. 42.
    A.V. Mazhukin, V.I. Mazhukin, Comput. Math. Math. Phys. 47, 1833 (2007)MathSciNetCrossRefGoogle Scholar
  43. 43.
    P.V. Breslavskii, V.I. Mazhukin, Comput. Math. Math. Phys. 48, 2102 (2008)MathSciNetCrossRefGoogle Scholar
  44. 44.
    B.M. Kozlov, A.A. Samokhin, A.B. Uspenskii, Kvantovaia elektronika 2(9), 2061 (1975)ADSGoogle Scholar
  45. 45.
    V.A. Batanov, F.V. Bunkin, A.M. Prokhorov, V.B. Fedorov, Sov. Phys. JETP 36, 311 (1973)ADSGoogle Scholar
  46. 46.
    Y.V. Senatsky, N.E. Bykovsky, S.M. Pershin, A.A. Samokhin, Laser Part. Beams 35, 177 (2017)ADSCrossRefGoogle Scholar
  47. 47.
    B. Wu, Y.C. Shin, Appl. Phys. Lett. 89, 111902 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    J.E. Hatch, Aluminum: Properties and Physical Metallurgy (ASM, Metals Park, 1984)Google Scholar
  49. 49.
    V.I. Mazhukin, M.M. Demin, A.V. Shapranov, Appl. Surf. Sci. 302, 6 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    S.N. Andreev, V.I. Mazhukin, A.A. Samokhin, M.M. Demin, Kratkie soobshcheniia po fizike 7, 50 (2006)Google Scholar
  51. 51.
    A. Spiro, M. Lowe, G. Pasmanik, Appl. Phys. A 107, 801 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Keldysh Institute of Applied Mathematics, RASMoscowRussia
  2. 2.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations